HAZMAT FOR THE FIRST RECEIVER: AWARENESS/REFRESHER WEBINAR TRAINING (OSHA)

Finger Lakes Regional Training Center University of Rochester Medical Center Rochester, NY

AGENDA

- Attendance
- Ground Rules
- Presentation
- o General Principles
- o Chemical
- $_{\circ}$ BREAK
- Biological
- Radiological
- o Decon Operations
- Additional Resources
- Evaluation/Certificate

WEBINAR GROUND RULES

- Webinar Will Be Recorded
- Don't Put Phone on Hold
- Use WebEx Icons:
- oUse Left Arrow Button to Indicate to Slow Down Presentation

Instructor

- Kathee Tyo, MS, RN
 - Kathee tyo@urmc.rochester.edu
- 585-463-2956

Acknowledgements

- USAMRICD, USAMRIID
- John G. Benitez, MD, MPH (Vanderbilt)
- Ruth A. Lawrence Poison & Drug Information Center (URMC)
- Center for Disaster and Emergency Preparedness (URMC)
- Gail Quinlan, RN, MS (URMC)
- Robert Passalugo, CIH, Darlene Ace, CIH (U of R)
- Kathee Tyo, MS, RN (URMC)

General Principles of Decon

- Training Requirements
- Recognition and Response
- Chemical Identification

Awareness Level Training • WHO: Everyone • WHAT: • How to know if someone... How to keep safe How to alert **Operations Level Training** • WHO: Decon Team Members • WHAT: Didactic and Practical Recognition of chemicals Recognition of symptoms • Clean up • When: • Must be completed annually along with a respiratory questionnaire **Decontamination** • Who: Anyone that is contaminated Victims Responders • What: Anything that is necessary for your hospital to Equipment Structures

Decontamination

- Where
- Uphill, Upwind when possible
- Designated external sites
- When: Anytime you suspect contamination
- Victim complains of pain, odor, etc.
- Victims near release site
- Visible material

Decontamination

- Why: Prevent worsening of problem
- Remove toxic agent
- Prevent staff/facility contamination

RECOGNITION & RESPONSE

Hazardous Substance

- Is any substance to which exposure may result in adverse effects on the health or safety of employees. (OSHA)
- Includes:
 - Substances defined by CERCLA
 - Biological agents with disease causing potential
 - US DOT substance listed as hazardous
 - Substances classified as hazardous waste

Chemical Hazards

- 69% occur at fixed sites (ATSDR,2007-2008)
- 91% involve one substance(ATSDR2007-2008)
- Most are liquid (40%) or vapors (41%)
 - Corrosives
 - Pesticides
- Gases
- Paints and dyes
- Volatile organic hydrocarbons
- Other inorganic chemicals

http://www.atsdr.cdc.gov/HS/HSEES/annual2008.html#substances

Contamination Event

- VERY common
- Patients go to CLOSEST* hospital
- Risk to hospital
 - Contamination of staff and facilities
- Need emergency plan
- · Need decontamination facility and team

5

Emergency Response Plan

- Train everyone to AWARENESS level- patients presenting to ED with contamination
- Decon Team Policies and Procedures
- Notification Procedure
- · ASSUME all are contaminated

Notification System

- Notifies all in ED/Hospital
- Specific responsibilities for all
- Activates Decon team
- Access Control/Lockdown

Activation/Response

- Decon Team Leader
 - Interviews patient from safe distance and OUTSIDE
 - Determines response based on scope of incident

Activation/Response

- Decon Team members and support staff
 - Gets decon room ready
- Gets partially dressed, except respirator
- Finalizes PPE and decontaminates victim(s) upon final say of Decon Team Leader

Incident Command System

- ICS should be followed at ALL levels
- Hospital
- Departmental
 - Specific team (ie, Decontamination)
- At each level, designated person to communicate with.

ICS - Decon Team

- COMMAND (Decon Team Leader)
- SAFETY OFFICER
- OPERATIONS (Decon team members)
- Logistics (Decon team suit/equipment support)
- LIAISON (Decon Team Leader or designee)

AGENT IDENTIFICATION

Labels/warnings...

- CAS numbers (Chemical Abstract Service #)
- Shipping manifesto/label
- Container label
- DOT placards
- Name of product on container

Initial ID/precautions

- Emergency Response Guidebook
- Quick guide
- General ID
- Occasional specific ID
- General guidance for class of chemical

Other patient's warning...

- It smelled like...
- It is used for...
- You HAVE TO USE A RESPIRATOR to...
- It tasted like...
- There's a <color> warning/placard on it...

Poison Center will...

- ID chemical
 - Based on placard information you find
- Based on signs and symptoms displayed
- Healthcare information
 - Signs and symptoms to watch out for
 - Treatments that may be needed
- 1-800-222-1222

WHY???

- Types of PPE
- Types of hazards to providers
- Type of Decon
 - Dry- removal of clothing
- Wet- removal of clothing and shower

CBRNE

- Define
- WMD
- NBC
- CBRNE
- Nuclear Devices
- Biological Weapons
- Chemical Weapons

NBC/CBRNE Agent Sources

- Home production
- Laboratory / commercial production
- Industrial facilities
- Military sources
- Medical / university research facilities

The Fallacies

- It can't happen to us
- NBC agents are so deadly the victims will all die anyway
- There is nothing we can do

Chemical Agents

Chemical Agents

- General Information
- Pulmonary Agents
- "Blood" Agents
- Blister Agents
- Nerve Agents

Tokyo Sarin Attack

984

- Numbers seeking medical care:
 5,510 total at 278 health-care facilities

 - Mild:
 - 37 · Moderate: Severe: 17
 - · Deaths: 12 Status unknown: >300
- No secondary contamination of health-care workers, but 2 vapor-exposed physicians

Real Life

- Most will not wait for EMS to arrive
- Most will go to hospitals without decontamination

About 80 % of victims arrive without decontamination

Characteristics and Behavior

- · Generally liquid (when containerized)
- Normally disseminated as aerosol or gas
- Present both a respiratory and skin contact hazard
- May be detectable by the senses (especially smell)
- · Influenced by weather conditions

Characteristics and Behavior

- Irritant/Corrosive vs. Drug-Like Effects
- Physical States
 - Vapor/Gases act quickly
- Liquids act slower
- Solids
- Normally disseminated as aerosol or gas

Characteristics and Behavior

- Present both a respiratory and skin contact hazard
- May be detected by the senses (especially smell)
- All forms of chemicals may cause contamination
- Personnel must wear protective equipment during decontamination and immediate patient care

Chemical Agent Clues

- Rapid onset of symptoms
- Similar signs and symptoms
- Absence of traumatic injury
- Emergency responders may be affected
- Animal or insect die-off
- Report of cloud or vapor release

Routes of Entry

- INHALATION vapor or aerosol
- Skin (percutaneous) liquid or vapor (vapor if prolonged contact with skin)
- INGESTION liquid or solid
- INJECTION intravenous or intramuscular

Volatility

- Tendency of a liquid agent to form vapor
- Volatility proportional to vapor pressure
- Affected especially by
- Temperature
- Wind
- Method of delivery

Persistence

- Tendency of a liquid agent to remain on terrain, other surfaces, material, clothing, skin
- Affected especially by
 - Temperature
 - Surface material
- Persistence is inversely proportional to volatility

•		_
		_
		_
		_
		_
		_
		-
		_
		_
		-
		_
		_

Examples

- Non-persistent agents (less than 24 hours) tabun, sarin, soman, cyanide, phosgene
- Persistent agents (greater than 24 hours) mustard, VX

CHOKING (PULMONARY) AGENTS

- Disrupts pulmonary function
 - Non cardiogenic pulmonary edema
- ARDS (Adult Respiratory Distress Syndrome)
- Treatment: Supportive

CHLORINE CYLINDERS

Ypres, Belgium, April 1915

CHLORINE - Civilian Uses

- Chlorinated lime (bleaching powder)
- Water purification
- Disinfection
- Synthesis of other compounds
- synthetic rubber
- plastics
- chlorinated hydrocarbons

CHOKING (PULMONARY) AGENTS

- Phosgene
 Odor: Newly cut hay
- · Symptoms: Coughing, choking, vomiting

- Chlorine
 Odor: Swimming pool
- · Symptoms: Coughing, choking, vomiting

PHOSGENE

- 42 y/o female
- 2 hrs post exposure
- rapidly inc. dyspnea
- PaO2 40 torr (room air)
- CXR: infiltrates -
- perihilar
- fluffy
- diffuse interstitial

PHOSGENE - Uses/Sources

- Chemical industry
 - foam plastics (isocyanates)
- herbicides, pesticides
- dyes
- Burning of:
- plastics
- carbon tetrachloride
 methylene chloride (paint stripper)
 degreasers

"BLOOD" AGENTS (CYANIDE)

- Hydrogen Cyanide (AC)
- Cyanogen Chloride (CK)

Blood Agents

- Cyanide Gas
- Odor: Bitter almonds/musty
- Symptom Onset: Rapid
- Symptoms: Normal skin color, gasping for air, shock,

CYANIDE (BLOOD AGENTS) Hydrogen Cyanide (AC), Cyanogen Chloride (CK)Gas at STP, lighter than air Mechanism: blocks cell utilization of oxygen • Old treatment: amyl/sodium nitrite and sodium thiosulfate • New treatment: hydroxocobalamin **Cyanide Treatment** Nitrites + Hemoglobin → MetHemoglobin metHgb + CN → cyanomethemoglobin CNmetHgb + thiosulfate → Hgb + thiocyanate Thiocyanate eliminated renally! **Cyanide Treatment** CN + hydroxocobalamin → cyanocobalamin (vit. B12)

Expensive
Easier to use
Less toxic
Eliminated renally

But interferes with some blood tests x 24 hours!

BLISTER AGENTS (VESICANTS)

- Sulfur Mustard (H,HD)
- Nitrogen Mustard (HN1, HN2, HN3)
- Lewisite = chlorovinyldichloroarsine (L)
- Mustard / Lewisite mixtures (HL,HT,TL)
- Phosgene oxime (CX)

VESICANTS: SULFUR MUSTARD

- Sulfur Mustard, Nitrogen Mustard
- Oily liquid, heavier than air and water, persistent
- Garlic Odor
- Mechanism: alkylating agent, DNA and proteins most sensitive targets
- Symptom onset delayed
- Symptom: Tearing, eye irritation, cough, blisters, and runny nose
- Treatment: Treat similarly to burn patients

BLIND LEADING THE BLIND

Convalescence 2wks-6months

MUSTARD: EYE

VESICANT EFFECTS

Iran/Iraq War: 90-95% burns, pulmonary injury, bone marrow suppression, sepsis, and eventually died.

NERVE AGENTS (ANTICHOLINESTERASES)

- Tabun (GA)
- Sarin (GB)
- Soman (GD)
- GF
- VX

NERVE AGENTS

- Sarin (GB), VX (persistent)
- All liquids initially at STP
- Mechanism: inhibits acetylcholinesterase, causes massive cholinergic crisis
- Treatment: atropine, oxime, diazepam

Nerve Agents

Odor

Tabun, Sarin: Non or fruity

• Soman: None

• VX: None/Sulfur

Properties

Volatile

Volatile

Persistent

Normal (cholinergic) synapse

But why does the acetylcholine disappear?

Signs and Symptoms of NA Exposure

- D iarrhea
- U rination
- M iosis
- B radycardia
- B ronchospasm
- B rhochorrhea
- E mesis
- L acrimation
- S alivation

and:

Seizures

Coma

Death

MARK I Kit (pralidoxime use) PRALIDOXIME CHLORIDE INLECTION PROLIDE HALLE THE PROLITICAL CHLORIDE INLECTION PROLITICAL CHLORIDE INL

MARK I Kit • Finish decontamination

- Observe for further symptoms
- If needed repeat with another kit
- Children
- Will need size appropriate dosing
- · No auto-injectors at this time

- 1		\sim
-0	low-up	(ara
I OI	IOVV-UP	Care

- Notify Decon team leader
- Receiving team and rest of ED should be ready with:

 - Atropine
- Pralidoxime
- Benzodiazepine
- Airway

Other Use

- IF YOU OR YOUR DECON TEAM LEADER SYMPTOMATIC:
- Notify Decon team leader
- Use MARK I kit
- Assist member to decon
- Assist member out of decon for further care

BREAK		

Biological Agents

- General Information
- Bacterial Agents
- Viral Agents
- Toxin Agents

Biological Agent Characteristics

- Produce delayed effects
- Do not penetrate unbroken skin
- Non-specific symptoms
- Undetectable by senses
- Difficult to detect in the field
- Do not evaporate
- Long incubation period

Biological Agent Characteristics (continued)

- Most effectively disseminated as aerosols
- Range of effects
- Obtained from nature
- Multiple routes of entry
- Destroyed by environment
- Some are contagious

Agents Considered for BW

- Bacteria and Rickettsiae
 Anthrax spores, Tularemia, Plague, Brucella, Q Fever
- Viruses:

Smallpox,VEE, Hemorrhagic fevers

• Toxins: Botulinum toxin, SEB, Ricin, Saxitoxin

Acquisition of Etiological Agents

- Multiple culture collections
- Universities
- Commercial biological supply houses, e.g. Iraq
- Foreign laboratories
- Field samples or clinical specimens, e.g. Ricin

Biological Agents

- Most toxic per weight
- Production technology is easily accessible
- Inhalation threat 1 to 5 micron aerosol
- Undetected until numerous casualties
- Incapacitating to lethal effects

BW General Properties

- · Not volatile, must be dispersed as an aerosol
- · Silent, odorless, tasteless
- Relatively inexpensive to produce
- Simple delivery technology
 - Point source aerosol generator
- Line source moving aerosol generator: auto, airplane, etc

BW - General Properties 2

- Inhalation is the most significant route of transmission for RW
- Aerosol 1 to 5 microns ideal size
- Other routes of entry: oral, dermal abrasion, or intentional percutaneous

Biological Detection

- Mainly of clinical diagnosis
- Lab confirmation may be delayed
- Unusually bad cases

Beware of multiple healthy people with similar complaints

Impact of a BW Release

- Extensive and prolonged need for medical services
- Increased need for PPE
- Possibility of a quarantine
- Handling remains/mortuary facilities
- Multiple jurisdictional challenges
- Responding to a "hoax" can be expensive

Physical Protection (PPE)

- · Only foolproof means of protection
- Present equipment is effective
- Problem is knowing when to put protective mask on
- No universal protection for civilian populations
- Limited education programs for civilian populations

•	
-	
•	

Possible Epidemic Syndromes in BW

- Influenza syndrome
- Pulmonary syndrome
- Jaundice syndrome
- Encephalitis syndrome
- Rash syndrome or cutaneous lesions
- Unexplained death or paralysis
- Septicemia/toxic shock

Cutaneous Anthrax

Anthrax - Prevention

- No documented cases of person-to-person transmission of inhalational anthrax has ever occurred
- Cutaneous transmissions are possible
- Universal precautions required

Plague - Pathogenesis

- Humans develop disease from either the bite of an infected flea or by inhaling the organism
 - Bubonic infection of a lymph node (usually lower legs)
 - Pneumonic infection of the lungs
 - Septicemia generalized infection from bacteria escaping from the lymph node: toxic shock
 - Orophangeal infections are rare, but reported

Pneumonic Plague Prevention

- Secondary transmission is possible
- Standard, contact, and aerosol precautions for at least 48 hrs until sputum cultures are negative or pneumonic plague is excluded

Tularemia - Pathogenesis

- Infectious via inhalation, ingestion, or absorption
- Inhaling only 10 to 50 organisms produces most lethal form of disease, typhoidal form
- Ingestion or absorption causes ulceroglandular form of disease
- Is not spread from person to person

\sim	
- 4	- 4
٦,	- 1

Q Fever - Pathogenesis

- Causes disease in animals (sheep, cattle, goats)
- Humans acquire disease by inhaling aerosols contaminated with the organism.

Q Fever

- Single organism is able to cause infection
- 2 to 3 week incubation period
- Hepatitis, pneumonia, endocarditis
- Can be contagious
- May survive of surfaces up to 60 days

Viruses as Biological Agents

- Smallpox
- Venezuelan Equine Encephalitis (VEE)
- Viral Hemorrhagic Fevers

3	4

Smallpox - Clinical Course

- $\ensuremath{^{\circ}}$ 7-17 day incubation period followed by myalgias, fever, rigors, vomiting, HA, and backache
- May have mental status changes
- Discrete rash with pustules develops over face and extremities and spreads to trunk
- Infectious until all scabs healed over
- All contacts quarantined for at least 17 days

Smallpox

Terrorist Use of Infectious BW Agents

- Provisional diagnosis needs to be made quickly
- High index of suspicion that BW agents have been used
- No time to wait on laboratory results to establish a definitive diagnosis
- The time course of the epidemic may aid in diagnosis

Toxins as Biological Agents

- Think of them as chemicals!
 - Botulinum
 - Ricin
 - Staphylococcal Enterotoxin B

Toxins General Characteristics

- Poisons produced by living organisms that cause effects in humans, animals or plants
- More toxic per weight than chemical agents
- Not volatile and minimal absorption in intact skin
- Not prone to person-to-person transmission
- Sudden onset of symptoms, prostration or death
- Effects: interfere with nerve conduction; interact with immune system; inhibit protein synthesis
- THINK OF IT AS A CHEMICAL!!!!!

Botulism Poisoning - Epidemiology

- Most outbreaks of foodborne botulism result from eating improperly preserved home-canned foods, with vegetables canned in oil being the most common source.
- 145 cases/year in the United States
- 15% foodborne
 65% infantile botulism
- Toxin can be harvested and delivered as aerosol
- · No person to person transmission

Botulinum Toxin - Pathogenesis

- Neurotoxins produced by Clostridium botulinum Botulism
- Most lethal compounds per weight -15,000 times more toxic than VX
- Similar effects whether inhaled or ingested
- Onset of neurologic symptoms
- After inhalation, 24-72 hours
 After ingestion, 12-36 hours

Botulism - Pathogenesis 2

- Blocks the release of ACh at the presynaptic terminal of the neuromuscular junction and autonomic nervous
- Bulbar palsies and skeletal muscle weakness occur

Botulism - Signs & Symptoms

- Descending paralysis
- Bulbar palsies first
- blurred vision
- mydriasis
- diplopia
- ptosis
- photophobia
- dysphagia
- dysarthria

Botulism - Signs & Symptoms 2

- Soon skeletal muscles become weak, starting in the upper body and moving symmetrically downward
- Symptoms progress acutely to respiratory failure in 24 hours to 2 days (try to obtain antitoxin)
- Patients usually awake and alert

"Floppy" baby flaccid paralysis

Ricin - Pathogenesis

- Potent cytotoxin a by-product of castor oil production:
 5% of mash after oil removed
- Over a million tons of castor beans are processed yearly into castor oil
- 200 times more toxic by weight than VX
- Blocks protein synthesis within the cell and thus tissue death
- Causes airway necrosis and edema when inhaled

Ricin - Pathogenesis

- Toxic by multiple routes of exposure
- Can be dispersed as an aerosol
- Effective by inhalation, ingestion, injection

Ricin - Signs & Symptoms

- Fever, chest tightness, cough, SOB, nausea, and joint pain 4 to 8 hours after inhalation
 Airway necrosis and edema leads to death in 36 to 72 hours
- Ingestion causes N,V, severe diarrhea, GI hemorrhage, and necrosis of the liver, spleen, and kidneys - shock and death within 3 days
- Injection causes necrosis of muscles and lymph nodes with multiple organ failure leading to death

Ricin - Diagnosis & Treatment

- DIAGNOSIS
 - Difficult
 - Routine labs are nonspecific
- TREATMENT
 - · Supportive oxygenation and hydration
 - No antitoxin or vaccine available
 - Not contagious

Staphylococcal Enterotoxin B (SEB) Pathogenesis

- Fever producing exotoxin secreted by Staphylococcus aureus - has endotoxin effects
- Common cause of food poisoning in improperly handled foods
- Symptoms vary by route of exposure
- Causes proliferation of T-cells and massive production of various interleukins and cytokines, which mediate the toxic effects

SEB - Pathogenesis 2

- Incapacitating even at sublethal doses
- 80% of exposed develop symptoms
- May be aerosolized and inhaled
- May be introduced into the food supply and ingested

SEB - Signs & Symptoms

- 3 to 12 hours after inhalation
 - Sudden onset of high fever, HA, chills, myalgias, and nonproductive cough
 - Severe SOB and chest pain with larger doses
- Chest x-ray usually nonspecific ARDS in severe cases
- Ingestion Nausea, vomiting and diarrhea develops, which may be severe

Defense Against BA – Self-Protection

- Treat every patient with respiratory complaints, a rash or open wounds as an "Infectious Source"
- Normal standard universal precautions for most biological agents
- HEPA filter mask upgrade for Pneumonic Plague/Smallpox/VHF
- Special protective garments are not necessary
- Precaution upgrades in areas of the hospital where aerosols could be generated: Lab centrifuges, autopsy facilities

Defense Against BA - Triage

- Initial triage of all biological casualties is Immediate
- Highest priority will be allocating existing resources
- Isolation rooms away from other patients
- Mechanical ventilators
- Personal protective equipment for staff
- Medications

Key Points Medical Approach to BA Attack

- Mandatory universal precautions with all infectious patients prevents spread of infection by containing all bodily fluids and utilizing barrier-protection nursing procedures
- · Decontamination as appropriate (toxins)
- Initiate therapy for what is treatable, but do not delay for infectious identification
- Report concerns to HOSPITAL ICS (they will report to Public Health Officials, Law Enforcement, and FBI)

Radiological Materials

Terms and Definitions

- Ionizing Radiation
- Protection
- · Contamination vs. Exposed

Ionizing Radiation - Alpha

- Alpha particles only travel 1 to 2 inches in air and microns in tissues
- Cannot penetrate the dead layer of the skin
- Can be shielded by a sheet of paper
- Greatest danger is from inhalation or ingestion

Ionizing Radiation - Beta

- Free electrons
- Penetrate skin but not vital organs
- Shielded by thick clothing or aluminum
- Greatest danger is through inhalation or absorption of beta emitters

Ionizing Radiation - Gamma Rays

- High energy rays
- Penetrate deep into tissue; require dense shielding
- Primary cause of radiation sickness
- Produced from radioactive decay and are a by-product of a nuclear weapon explosion or reactor accident

Ionizing Radiation - Neutrons

- Uncharged particles
- Can damage cells on contact
- Can make material they strike radioactive
- Result of a nuclear weapon explosion
- Penetrates extensively; require special shielding

4	
/1	- 4

Radiation Exposures Average Annual Exposure 360 mrem per year Chest x-ray 10 to 30 mrem Flight 0.5 mrem every hour Chronic Smoking 1.5 packs per day 16,000 mrem per year Mild radiation sickness* 200,000 mrem Lethal Dose* 450,000 mrem * single acute exposure Acute DOE maximum annual occupational limit = 5,000 mrem DOE maximum emergency dose = 10,000 mrem (for saving property) Maximum emergency dose (for saving life) = 25,000 mrem

Health Risks

- Risks depend on:
 - Amount
 - Rate
- Categorized as:
- Acute
- Chronic

Contaminated vs. Exposed

- Contaminated victims pose a risk to others
- If you are contaminated, you are also exposed
- Exposed victims are not necessarily contaminated
- Geiger counter to determine if victims are contaminated

DECONTAMINATION TEAM

Roles Chemical ID PPE Equipment Patient Flow

Decon Team Duties

- Decon Team Leader
- Decon Operations Team (2, must have training)
- Suit/equipment Support Team (2-4, all must have training)

Decon Team Leader

- Direct patient(s)
 - to staging area
 - remove clothes
- Brief Team
- Monitor team
 - Operations Team
 - Suit/equipment support
- Chemical ID (use poison center)
- Decon team member ONLY communicate with Team Leader!

Decon	Team	Members	(2)
DOCCII	IOGITI	14101110010	\ <u>~</u> /

- Pre-entry assessment
- Inspect equipment
- Don PPE
- Decontaminate as needed
- Provide BLS
- Clean self/room
- Doff PPE
- Post-entry assessment
- Shower
- Debrief

Suit/equipment Support

- Utilize appropriate PPE (splash protection)
- Prepare PPE
- Assist donning/doffing PPE
- Monitor team
- Assist moving cleaned patients
- Assist in PPE removal and exit of Decon team

Key Questions Prior to Decon

- Water compatibility of substance
 - Most OK
- Dry vs Wet Decon
- Level of PPE required
- Signs and symptoms of acute exposure
- · Cleanup and disposal requirements

Personal Protective Equipment

Level A

Required when the highest potential for exposure to hazards exists and the highest level of skin, respiratory, and eye protection is called for

VAPOR PROTECTION

Level B

Required when the highest level of respiratory protection but a lesser level of skin protection is needed

Can be encapsulating or non-encapsulating

LIQUID SPLASH PROTECTION

Level C

Required under circumstances that call for lesser levels of respiratory and skin protection

Can be used with SCBA's or APR's

DUST & SOLIDS PROTECTION

Level D

Appropriate when minimal skin protection and no respiratory protection is required

SUPPORT PROTECTION

Equipment Needs

- Crash cart in hallway or near tent
 - Pass to clinical team member when needed
 - Medication
 - · Intubation equipment
- Maintain personnel protection!

Radios

- Must go on UNDER PPE
- Make sure all on ONE channel
- Test before putting on, after dressed
- Have backup procedures for communication should radios fail
- Hand on top of head = OK
- Hand(s) to neck = can't breathe

Cautions

- Risks to person in decon room!
- PPE survey & exam
- Personnel: vital signs before & after!
- Risks:
 - Heat
 - Chemical
 - Equipment malfunction

Patient Flow

- Special door from outside (ONLY!)
- "Hot" zone: by exterior door
 - Undress
- Collect contaminated clothing
- "Warm" zone: under shower, on stretcher
 - Shower or wash
- "Cool" zone: by door to hallway
 - Pass to clean stretcher, etc.
- Assistants to help

-			

Tent (if applicable)

- Additional training in setting up
- Know your facilities policy!

Conclusion

- Keep yourself safe!
- Keep institution safe!
- Only in this manner can we take care of patients.
- What is appropriate PPE?
- What is our appropriate response?

REVIEW

- People exposed to certain biological agents (viruses or bacteria) may not become ill until many days later.
- Following any chemical, biological, or radiation incident, all victims will be decontaminated before arriving at medical care facilities.
- Standard latex medical gloves provide adequate protection for disposing of waste contaminated by a chemical.

REVIEW

- A Department of Transportation (DOT) placard on the back/side of a tanker trunk will not provide any information that could identify the chemical being transported.
- Chemical, biological, and radiation attacks are crimes, and victims' clothing should be saved because it may be used as evidence.

REVIEW

- Level D personal protective equipment (PPE) provides the highest level of protection and is appropriate for highly dangerous chemicals.
- 7. The main effects of all the following chemical agents occur within seconds to a few minutes except one:
- a. Sarin (nerve agent)
- b. Cyanide (blood or tissue agent)
- c. Chlorine (choking agent)
- d. Sulfur mustard (blister agent)
- e. Mace (tearing agent)

REVIEW

- 8. You hear through other employees that a patient that you cared for yesterday has now been diagnosed as having pneumonic plague. The patient had a fever and a cough when you cared for her. What actions should you take?
 - a. No action is necessary since pneumonic plague can not be spread person- to-person.
 - b. Ensure that you get vaccinated with the plague vaccine at once so that you do not become ill.
 - c. Notify employer so you can begin a course of antibiotics at once so that you do not become ill.
 - d. Notify your family that you must be quarantined until it becomes known if you will develop plague.
 - e. None of the above

-			
-			
_			
_			
-			
-			
_			
_			
-			
-			
-			
_			
_			
-			
-			
-			
_			

REVIEW

- 9. Atropine should be administered as soon as possible to victims suffering from which class of chemical agents?
 - a. Vomiting agents
 - b. Nerve agents
 - c. Blood agents
 - d. Blister agents
 - e. Choking agents

Thank You!

Finger Lakes Regional Training Center
Anne D'Angelo: anne_dangelo@urmc.rochester.edu
Eileen Spezio: eileen_spezio@urmc.rochester.edu
585-758-7640

Visit Our Website at: WRHEPC.URMC.EDU

-Select Preparedness & Response Tools/Resources
-Select OSHA/Hazmat/Decon

