
The Impact of Sensitivity to Fast Spectrotemporal Chirps on Speech Coding in 

the Mammalian Inferior Colliculus: Physiology and Modeling 

by 

Paul W. Mitchell 

 

Submitted in Partial Fulfillment of the 

Requirements for the Degree 

Doctor of Philosophy 

 

Supervised by Professor Laurel H. Carney 

 

Department of Biomedical Engineering 

Arts, Sciences and Engineering 

Edmund A. Hajim School of Engineering and Applied Sciences 

 

University of Rochester 

Rochester, New York 

2024



ii 
 

Table of Contents 

List of Tables ........................................................................................................................ x 

List of Figures...................................................................................................................... xi 

Biographical Sketch ............................................................................................................. v 

Acknowledgements ............................................................................................................. vi 

Abstract .............................................................................................................................. vii 

Contributors and Funding Sources ..................................................................................... ix 

Chapter 1: Introduction ........................................................................................................1 

1.1 Characterizing IC sensitivity to frequency chirps ..........................................................4 

1.2 Incorporating chirp sensitivity into a computational model of the IC ..........................10 

1.3 Assessing the impact of chirp sensitivity on speech coding .......................................13 

1.4 Overview of the thesis .................................................................................................16 

Bibliography .......................................................................................................................17 

Chapter 2: Sensitivity to Direction and Velocity of Fast Frequency Chirps in the Inferior 

Colliculus of Awake Rabbit ..........................................................................................22 

2.1 Abstract ........................................................................................................................22 

2.2 Introduction ..................................................................................................................23 

2.3 Methods .......................................................................................................................25 

2.4 Results .........................................................................................................................34 

2.5 Discussion ....................................................................................................................51 



iii 
 

Acknowledgements ............................................................................................................57 

Bibliography .......................................................................................................................57 

Chapter 3: A Computational Model of Auditory Chirp-Velocity Sensitivity and Amplitude-

Modulation Tuning in Inferior Colliculus Neurons........................................................61 

3.1 Abstract ........................................................................................................................61 

3.2 Introduction ..................................................................................................................61 

3.3 Methods .......................................................................................................................65 

3.4 Results .........................................................................................................................79 

3.5 Discussion ....................................................................................................................94 

Acknowledgements ......................................................................................................... 100 

Bibliography .................................................................................................................... 100 

Chapter 4: Examining the Impact of Chirp-Sensitivity on Vowel Coding in the Inferior 

Colliculus ................................................................................................................... 105 

4.1 Abstract ..................................................................................................................... 105 

4.2 Introduction ............................................................................................................... 106 

4.3 Methods .................................................................................................................... 108 

4.4 Results ...................................................................................................................... 118 

4.5 Discussion ................................................................................................................. 133 

Bibliography .................................................................................................................... 136 

Chapter 5: Summary and Discussion ............................................................................. 139 

5.1 Summary and Novel Results .................................................................................... 139 



iv 
 

5.2 Future Work .............................................................................................................. 142 

Bibliography .................................................................................................................... 148 

 



v 
 

Biographical Sketch 

 Paul Mitchell graduated from the University of Texas at Dallas in 2017 with a 

Bachelor of Science degree in Biomedical Engineering. He began his doctoral studies in 

the Department of Biomedical Engineering at the University of Rochester in 2017, and 

received a Master of Science degree in Biomedical Engineering in 2019. Paul was 

awarded an NIH F31 Predoctoral Fellowship in 2021. Since 2018, Paul has pursued a 

thesis focused on understanding the nature and implications of fast frequency chirp 

sensitivity in the auditory midbrain, under the supervision of Dr. Laurel H. Carney.  

 The following publications were a result of work conducted during doctoral study:  

Journal Publications: 

Mitchell, P. W., Henry, K. S., & Carney, L. H. (2023). Sensitivity to direction and velocity 

of fast frequency chirps in the inferior colliculus of awake rabbit. Hearing research, 440, 

108915.  

Mitchell, P. W. & Carney, L. H. (2024, in press). A Computational Model of Auditory 

Chirp-Velocity Sensitivity and Amplitude-Modulation Tuning in Inferior Colliculus 

Neurons. The Journal of Computational Neuroscience. 



vi 
 

Acknowledgements 

 First and foremost, I would like to thank my advisor, Dr. Laurel Carney. I started 

working with Laurel during a period of personal uncertainty towards my future. Without 

her example and guidance, I would certainly not be completing my PhD now. 

 I would also like to acknowledge all current and past committee members, 

including Dr. Ross Maddox, Dr. Zhiyao Duan, Dr. Mark Bocko, and especially Dr. Ken 

Henry, who provided advice throughout my PhD. 

 Thanks to all current and past Carney lab graduate students and post-docs, Dr. 

Langchen Fan, Dr. Braden Maxwell, Dr. Afagh Farhadi, Johanna Fritzinger, Dr. Daniel 

Guest, and Dr. Swapna Agarwalla, as well as members of the Henry lab, Yingxuan 

Wang and Leslie Gonzales, for the years of camaraderie and support. Also, special 

acknowledgement to Doug Schwarz and Kris Abrams for their assistance and friendship 

throughout my PhD. 

 I would like to thank my wonderful girlfriend Ellen Kneeskern for being an 

irrepressible ray of optimism and joy even in the most difficult stretches of graduate 

school. I am so happy we can be a context for one other. 

 Finally, I would like to thank my parents, Jerry and Wei Mitchell, and my brothers, 

Stephen and David. Your lifelong belief in me has made all of this possible. 

 



vii 
 

Abstract 

Recordings of auditory midbrain neurons in the inferior colliculus (IC) have 

revealed large rate differences in response to fast frequency chirps of different directions 

or velocities. This observation has implications for IC responses to perceptually-

important sounds such as speech: neural response rates may be substantially impacted 

by chirp cues in a way not predicted by more commonly studied response properties, 

such as characteristic frequency (CF) or modulation transfer function (MTF) shape. In 

vowels, the phase transitions associated with resonances of the vocal tract suggest that 

chirp cues may arise near formant frequencies. Thus, it is important to account for the 

effect of chirp cues in IC speech responses.  

 To characterize chirp-sensitive neurons, recordings were made of IC units. A 

novel stimulus was developed to characterize IC neuron velocity sensitivity in an 

aperiodic context using rate-velocity functions (RVFs). RVFs were shown to be 

independent from CF or MTF shape. The majority of IC neurons displayed direction-

selectivity to chirps for at least one velocity—this selectivity was most often observed at 

lower chirp velocities compared to higher velocities. 

 IC chirp sensitivity was incorporated into a computational model that retained 

tuning to frequency and AM. The mechanism of chirp sensitivity in the IC was 

hypothesized to originate in octopus cells of the posteroventral cochlear nucleus, which 

display a similar diversity of chirp sensitivity to the IC. Octopus cell chirp sensitivity was 

modeled using sequence detection, whereby correct arrival order of auditory-nerve 

inputs is required to elicit a response. Octopus-cell output was an inhibitory input the IC, 



viii 
 

alongside an inhibition to produce band-enhanced MTFs. The model was capable of 

simulating neurons with physiologically valid CFs and RVFs. 

 The impact of chirp sensitivity on vowel coding was assessed with a combination 

of physiology and modeling strategies. IC responses to vowel stimuli were classified 

based on average rate and spike timing. Overall classification accuracy was found to be 

correlated with directionless velocity-sensitivity and high-velocity direction bias. 

Additionally, individual neurons' vowel responses were examined in the chirp model, but 

the relationship of model neuron RVFs and vowel classification remained unclear. 
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Chapter 1: Introduction 

 The auditory system is a network of neural pathways that accomplishes the task 

of converting sound into useful information about the world. Broadly, the auditory system 

can be divided into two parts. The peripheral auditory system transduces sound into a 

signal understandable by the brain, ultimately a series of electric impulses in time. The 

central auditory system, the part included within the brain, processes and integrates 

signals received from the periphery, eventually resulting in perception (Yost, 2013). For 

humans, an essential purpose of the auditory system is deciphering complex sound 

stimuli like speech into meaning. 

 Responses of the auditory system are indescribable by linear system—that is, a 

system in which outputs are linearly related to inputs. In particular, nonlinear aspects of 

the periphery strongly impact signals in the central auditory system. One example is the 

active mechanism of the cochlea by outer hair cells (OHCs), which lends the mechanical 

response of the basilar membrane higher frequency specificity than could be achieved 

with an inactive mechanism alone (Kim, 1986), and serves to selectively amplify signal 

gain across frequencies (Ashmore, 2008; Hudspeth, 2014). It is important to note that 

these nonlinearities are not undesirable or negligible, but essential in the sense that they 

shape and define an emergent code of sound features that is used by subsequent areas 

in the auditory pathway. For instance, loss of the active processes of the cochlea 

(through hearing loss) is implicated with a substantial decrease in the ability to perceive 

speech, especially in background noise (Oxenham et al., 2003), presumably due to a 

degradation in signal contrasts achieved by the normal compressive properties of the 
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cochlea (Carney, 2018; Carney, 2024). Therefore, the nonlinear properties of the 

auditory system crucially impact how the brain processes complex sounds like speech. 

 However, peripheral nonlinearities often clash with historically leading theories of 

complex sound coding. In the auditory nerve (AN), the two most prominent theories are 

coding based on rate and temporal fine structure (TFS) (Sachs and Young, 1979; Young 

and Sachs, 1979), both of which theorize a representation of spectral peaks contained in 

speech, either based on the firing rate of tonotopically organized AN fibers (Cedolin and 

Delgutte, 2005) or the precise timing of responses of those fibers (Sachs et al., 1988). 

Both of these theories are challenged by properties of peripheral nonlinearities. Firing 

rates of AN fibers saturate with increasing stimulus level (Costalupes et al., 1984). 

Specifics of this rate-saturation differ between fibers depending on their spontaneous 

rates (Liberman, 1978). Additionally, AN fibers can be organized into high-, medium-, 

and low-spontaneous-rate groups (HSR, MSR, and LSR, respectively). HSR fibers, 

comprising the majority, saturate at low sound pressure levels (SPLs), about 20-30 dB 

SPL (Bharadwaj et al., 2014; Huet et al., 2016), as compared to conversational speech 

levels, about 55 – 66 dB (Olsen, 1998). Although MSR and LSR fibers have extended 

dynamic ranges compared to HSR fibers (Yates, 1990), the majority of AN fibers (HSRs) 

saturating at levels at which conversation is normally conducted is incongruous with 

rate-based coding. Furthermore, TFS code degrades in the AN both above 1 kHz 

frequencies (Johnson, 1980), and at conversational speech levels (Delgutte and Kiang, 

1984). Therefore, a comprehensive code for complex sounds like speech at the 

periphery based on rate or TFS is unlikely, motivating the need to examine the central 

auditory system for coding mechanisms that might take advantage of peripheral 

nonlinearities instead of being hindered by them. 
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 The inferior colliculus (IC) is a nearly obligatory point of convergence in the 

ascending auditory pathway, receiving diverse excitatory and inhibitory input from all 

lower regions. The IC is sensitive to sound features—notably including frequency, 

binaural cues, and amplitude modulations (AM) (Aitkin and Reynolds, 1975; Stiebler and 

Ehret, 1985; Langner and Schreiner, 1988)—but importantly, these sensitivities are 

diverse between individual IC neurons, and the same neuron can exhibit sensitivity to 

multiple sound features. IC neurons are tuned toward the specific modulation 

frequencies of AM sounds, commonly displaying enhanced or suppressed response 

rates relative to unmodulated sounds (Kim et al., 2020). These modulation frequencies 

also coincide with the range of speech pitch (Bishop and Keating, 2012). AM tuning in 

the IC has been theorized as the crux of an alternative method of coding speech based 

on neural fluctuations of AN fibers (Carney, 2018; Carney, 2024). In this theory, AN 

fibers tuned to spectral peaks saturate due to a combination of cochlear compression 

and transduction saturation of the inner-hair-cell (IHC), another peripheral nonlinearity. 

Meanwhile, AN fibers tuned away from spectral peaks display comparatively higher 

amplitude fluctuations in their neural response patterns. In the IC, AM-sensitive neurons 

convert the presence or absence of neural fluctuations into a rate code, and form a 

spectral profile that encodes the location of peaks across frequency (Carney, 2018). 

Such a representation of speech would additionally be robust at conversational speech 

levels and even in background noise. (Carney, 2018). Neural fluctuation coding of 

speech serves as an example whereby feature sensitivities of the IC can be leveraged to 

construct a representation of complex sounds resistant to the pitfalls of coding schemes 

limited to the periphery. 
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 In this thesis, we describe efforts to update and expand our understanding of 

complex sound representation in the IC to include a relatively new and under-explored 

sensitivity to the direction and velocity of fast frequency chirps. This work began by 

summarizing response patterns of IC neurons to chirps, continued with constructing a 

model capable of chirp sensitivity, and ended with an analysis of the impact of chirp-

sensitivity on speech coding.  

1.1 Characterizing IC sensitivity to frequency chirps 

Much of the inciting evidence for this work stems from a series of preliminary 

experiments conducted in 2016-2017 consisting of extracellular, single-unit recordings of 

the responses of IC neurons to Schroeder-harmonic complexes (this work would also 

eventually culminate in Steenken et al., 2022). In this work, Schroeder-harmonic 

complexes (henceforth SCHR stimuli) were used as a way to examine IC responses to 

fast frequency sweeps. 

SCHR stimuli were invented by Schroeder (1970) to introduce a formula to 

calculate the necessary phase of a harmonic complex resulting in a maximally flat 

stimulus envelope. The stimulus has a flat magnitude spectrum and phase spectrum 

defined by the equation: 

𝜃𝜃𝑛𝑛 =  𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶 − 1)/𝑁𝑁 

which describes 𝜃𝜃𝑛𝑛, the phase of the nth harmonic, as a function of harmonic number n 

and the total number of harmonics N (Schroeder, 1970). Additionally, C represents a 

duty-cycle factor that also determines the sign of the phase function. These spectra are 

depicted in Figure 1.1. 
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Figure 1.1 – Magnitude and phase spectra of the SCHR stimulus (positive-SCHR in red, 
negative-SCHR in blue). 

SCHR stimuli are defined by a linear frequency sweep extending from the 

fundamental frequency (F0) to the highest harmonic during each stimulus period. The 

velocity of this sweep can be controlled by modulating F0—for instance, doubling F0 

from 50 Hz to 100 Hz doubles the velocity, as the sweep travels a comparable frequency 

range over half the time. Depending on the sign of C, the frequency sweep contained in 

the SCHR stimulus either increases over time (for C = -1) or decreases (for C = 1). The 

resulting waveform and spectrogram depicting the within-period frequency sweep is 

depicted in Figure 1.2. Note that SCHR stimuli are typically assigned a name associated 

with direction of their phase functions, not the direction of their frequency sweep. Thus, 

+SCHR stimulus contains a negative frequency sweep, and vice versa. To eliminate 

ambiguity, the remainder of this document will refer to +SCHR stimuli as “downward 

SCHR” and -SCHR as “upward SCHR”—additionally, all figures depicting SCHR stimuli 

or related stimuli and responses will use the color red to refer to downward SCHR, and 

blue to refer to upward SCHR (including Fig. 1.1 and 1.2). 
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Figure 1.2 – SCHR stimulus waveforms and spectrograms. Top: SCHR waveform with 
F0 = 50 Hz, C = +1 (red, left) and C = -1 (blue, right). Bottom: Spectrogram illustrating 
negative frequency sweep in +SCHR (left), and positive frequency sweep in -SCHR 
(right). 

 In the preliminary experiments, the response rates of IC neurons varied 

substantially for stimuli that differed only in the direction or velocity of frequency sweep 

(Figure 1.3). Furthermore, in the cases that the stimuli differed only in direction of sweep 

(i.e., phase direction), these stimuli were time-reversed versions of one another, 

suggesting the existence a nonlinearity in responses of the IC to SCHR sweeps. Finally, 

neurons expressed a diversity of responses to SCHR stimuli, rarely responding uniformly 

by sweep direction, instead responding differently with velocity. 
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Figure 1.3 – Dot rasters depicting responses of two IC neurons to SCHR stimuli of 50 Hz 
and C = ±1. Within each row, stimulus repetition number is indicated by vertical location 
of dot, and time by horizontal location. Top: neuron 1 (N1) displaying direction bias 
towards -SCHR (upward sweep). Bottom: neuron 2 (N2) displaying direction bias 
towards +SCHR (downward sweep). 

 It is important to note that the frequency sweep represented by the SCHR 

stimulus is distinct from many conventionally considered frequency modulation (FM) 

stimuli, in the context of the auditory system. Primarily, the speed of the SCHR sweep is 

much faster than spectrotemporal changes in other signals, such as formant transitions 

in vowels (Liberman and Mattingly, 1989), which occur over the course of several pitch-

periods and represent frequency-shifts in the hundreds of Hz. For comparison, SCHR 

sweeps travel from F0 to the highest harmonic (in this work, 16 kHz) over the 

fundamental period (here, 2.5 to 20 ms), placing the spectrotemporal velocities in the 

realm of bat echolocation sweep velocities (Fuzessery, 1994; Gordon and O’Neill, 1998). 

To distinguish SCHR sweeps from slower FM, we refer to them and similar stimuli as 

chirps for the remainder of this document.  

Additionally, the responses in Fig. 1.3 were recorded in rabbits, a species that 

does not produce specialized vocalizations containing chirps (Awan et al., 2014), unlike 

bats. On the contrary, rabbits are considered hearing generalists, with high-frequency 
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audiometric thresholds comparable to similarly-sized mammals, and low-frequency 

thresholds similar to humans (Heffner and Masterson, 1980). Altogether, this data 

suggests that IC neurons are sensitive to the direction and velocity of frequency chirps in 

SCHR stimuli. 

For the implications of this preliminary data to be interrogated further, it was 

necessary to fully define the nature of supposed chirp sensitivity and its relationship to 

other IC feature sensitivities. Notably, SCHR stimuli, as harmonic complexes, are highly 

periodic and thus represent a strong AM cue to an individual, IC neuron. In the first 

chapter of this work, we tested the hypothesis that the observed sensitivity of IC neurons 

to SCHR chirps represented a general chirp velocity sensitivity that would manifest in 

aperiodic contexts. We aimed to use physiological methods to characterize the trends of 

chirp sensitivity with other known feature sensitivities of the IC, in particular frequency 

and AM tuning. 

One crucial outcome of this work was the development of the aperiodic chirp 

stimulus—this stimulus was inspired by techniques such as modulation transfer 

functions (MTFs), which describe a neuron’s response rate to modulated stimuli as a 

function of modulation frequency. Similarly, the objective of the aperiodic chirp stimulus 

was to describe neural response rates to chirps as a function of chirp velocity, 

completely removed from the periodic context of SCHR stimuli, in a summary figure 

called a rate-velocity function (RVF). 

Aperiodic chirp stimuli are designed to be SCHR-like—they are comprised of 

single-cycles of SCHR stimuli (i.e., individual chirps) presented in random order and with 

random silent-interval spacing to ensure aperiodicity. Similarity to the SCHR stimulus is 
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important because it allows RVFs and MTFs to be used as orthogonal feature vectors, 

representing chirp velocity and periodicity tuning, respectively, upon which SCHR 

responses can be predicted. One finding of this analysis was that, while the majority of 

SCHR response variance was predicted by neurons’ MTFs, the RVF contributed a high 

percentage of variance explained for a subset of the population comprising the neurons 

with direction bias in their SCHR responses. 

Another outcome of this work was the use of receiver operating characteristic 

(ROC; Egan, 1975) analysis to quantify the direction selectivity of a neuron to particular 

pairs of equal-speed (absolute velocity) chirps. Neurons were labeled as significantly 

biased towards a direction if the ROC area under the curve (AUC) surpassed the 

threshold (70.7%) equivalent to that of a two-down, one-up psychophysical procedure 

(Levitt, 1971)—the direction that AUC passed this threshold (i.e., above 70.7% or below 

29.3%) determined the direction of bias. Using this definition of direction bias, we 

reached the conclusion that the vast majority of IC neurons (>90%) were direction 

biased for at least one equal-speed chirp pair. Additionally, the prevalence of direction 

biased neurons did not appear to vary with characteristic frequency (CF) or MTF shape. 

Rather, the defining feature of chirp sensitivity among IC neurons tended to be diversity. 

Finally, principal component analysis (PCA) on the entire population of RVFs 

revealed three dimensions along which the RVFs most differed—average rate (PC1), 

direction-independent velocity sensitivity (PC2) and low-velocity direction bias (PC3). In 

particular, PC2 and PC3 pointed to a natural divide in the way neurons responded to 

chirp-velocities at 2 kHz/ms. PC2 indicated that neurons tended to have high response-

rates to low chirp velocities (< 2 kHz) and low response-rates to high chirp velocities (> 2 
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kHz), or vice versa. PC3 reflected the chirp-direction bias to low-velocity chirps (< 2 

kHz). 

Overall, the completion of this study provided evidence that chirp direction and 

velocity sensitivity was its own feature sensitivity independent of periodicity cues, and 

additionally showed the physiological ubiquity of chirp sensitivity. Furthermore, it 

introduced several analysis tools such as aperiodic chirp stimuli, RVFs, and ROC 

direction bias, that would be employed in future work (Mitchell et al., 2023).  

1.2 Incorporating chirp sensitivity into a computational model of 

the IC 

With chirp direction and velocity sensitivity established as a common 

characteristic among IC neurons, the need for a computational model to simulate 

responses to chirps became clear. Such a model has two utilities: first, design of a 

plausible computational model allows the testing of candidate mechanisms for chirp 

sensitivity, for which the contributing physiological sources are still unclear. Second, 

such a model would allow the nature of chirp-sensitivity in the model neuron to be 

experimentally altered directly, permitting further study on the impact of chirp sensitivity 

on responses to complex sounds, like speech. 

Bat literature has identified several potential mechanisms whereby chirp direction 

sensitivity might arise. The most basic model depends on asymmetric sideband 

inhibition alongside excitation (Rees and Langner, 2005)—the differently-timed 

excitatory and inhibitory inputs combine to form a spectrotemporal filter. For example, 

chirps that traverse the inhibitory region prior to excitation do not result in a response 

due to the coincidence of excitation and slower-acting inhibition (Gordon and O’Neill, 
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1998; Portfors, 2018). Other mechanisms have been hypothesized to impact chirp 

sensitivity, including early on-CF inhibition, which may act to reject chirps traversing the 

excitatory region too slowly (Fuzessery et al., 2006; Fuzessery et al., 2011), and wide-

band facilitation, which requires multiple cross-frequency inputs with differing delays to 

sum to overcome blanket inhibition (Fuzessery and Hall, 1996). Another theory 

implicates inhibition originating from the superior paraolivary complex (SPON) as a 

source of non-directional velocity tuning (Pollak et al., 2011). Finally, another hypothesis 

proposes that cells with high input resistances and long time constants may become 

chirp direction sensitive through asymmetry in input magnitudes rather than timing 

(Gittelman et al., 2009). 

The physiological mechanism that informed the model presented here arises in 

the octopus cells of the posteroventral cochlear nucleus (PVCN) (Oertel et al., 2000). In 

particular, the model was heavily influenced by the work of Lu et al. (2022), which 

presented a theory of sequence detection to explain the strong sensitivity to chirp 

direction and velocity observed in octopus cells. Octopus cells have wide dendritic fields 

that receive AN inputs from many different frequencies (Osen, 1969). Octopus cells are 

also characterized by low-voltage-activated potassium (KL) channels, known for slow 

recovery times (Bal and Oertel, 2001). Acknowledging that inputs of different frequencies 

may also have different amplitudes, a potential mechanism to select for chirp direction 

emerges: a suprathreshold excitatory post-synaptic potential (EPSP) in isolation will 

trigger a response before hyperpolarization associated with KL channels prevents 

subsequent response. If a subthreshold EPSP arrived before the suprathreshold EPSP, 

the hyperpolarization initiated by the subthreshold input would coincide with the 

suprathreshold EPSP, preventing an action potential. If we imagine these two inputs as 
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having different frequencies, this mechanism would select for a particular sequence of 

cross-frequency inputs, and could explain chirp direction selectivity (Lu et al., 2022). 

Furthermore, octopus cells project to the contralateral ventral nucleus of the 

lateral lemniscus (VNLL) (Adams, 1997; Vater et al., 1997), which is known to provide 

inhibition to the IC. The combination of mechanism and well-studied projection to the IC 

makes octopus cell sequence detection a promising focus for the computational model. 

In designing the model, we employed a strategy pioneered by Krips and Furst 

(2009), which describes model cells as coincidence detectors (CD) that combine any 

number of excitatory or inhibitory inputs with their own parameters determining timing 

and strength. Krips and Furst’s work comes from a family of models originated by 

Siebert (1965), which broadly use statistical decision theory to estimate psychophysical 

thresholds as a function of stimulus parameters—this method has previously been used 

to examine discrimination of tone frequency, sound level, and interaural time and level 

differences (Siebert, 1970; Colburn, 1973; Heinz et al., 2001a,b). Krips and Furst 

innovated upon this tradition by showing that if the statistics of CD outputs conformed to 

nonhomogeneous Poisson processes (NHPPs), those outputs could be used to drive 

inputs to a subsequent model cell, effectively extending the model from the periphery 

into the central nervous system (Krips and Furst, 2009). Finally, and of chief importance 

to the work presented here, Krips and Furst’s method represents a highly flexible 

strategy in which numerous and varied model architectures can be theorized. 

In the third chapter of this work, we tested the hypothesis that RVFs recorded 

from physiological units could be simulated by an IC model receiving input from an 
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octopus cell with sequence detection. Crucially, we aimed for the model to explain chirp 

sensitivity alongside other IC feature sensitivities, chiefly AM tuning.  

Within the Krips and Furst framework, sequence detection was implemented in 

the model’s first stage, wherein an octopus cell was simulated with two excitatory inputs, 

representing AN inputs of different magnitudes, and two inhibitory inputs, representing 

the long-term hyperpolarization related to KL channels. The model’s first stage consisted 

of an IC cell receiving on-CF excitation alongside delayed on-CF inhibition, and leading 

octopus-cell inhibition. The two inhibitory processes controlled AM tuning and chirp 

sensitivity, respectively. Delayed same-frequency inhibition and excitation (SFIE) 

(Nelson and Carney, 2004) is a strategy for creating band-enhanced (BE) MTFs, 

characterized by elevated rates to a band of modulation frequencies relative to 

unmodulated.  

In the main outcome of this work, we show that parameters can be proposed for 

model neurons that mimic the range of CFs seen in physiological recordings of chirp 

sensitive neurons. Across this CF range, RVFs of either upward or downward direction 

bias can be proposed, all with BE MTFs, and all within the same model cell. In summary, 

using sequence-selective octopus-cell inhibition as the basis of chirp sensitivity in the IC, 

we proposed a model that can accurately portray multiple IC sound-feature sensitivities 

in the same model neuron (Mitchell and Carney, 2024). These qualities make the 

presented model a useful tool for examining responses of the IC to complex sounds. 

1.3 Assessing the impact of chirp sensitivity on speech coding 

Vowels make up a significant portion of available phonemes in language, and 

make strong contributions to overall speech intelligibility and linguistic information 
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(Ladefoged and Broadbent, 1957; Kewley-Port et al., 2007). Vowel identity is defined by 

spectral peaks known as formants (Fant, 1971). One proposed code of formant 

frequency in the IC is based on contrasts in the profile of neural fluctuations of AN 

responses to spectral peaks and valleys (Carney, 2018; Carney, 2024)—neural 

fluctuation code is resistant to rate saturation of the AN and background noise. 

Through the sensitivity to chirp direction and velocity described in earlier 

chapters, it is possible that chirp-cues in vowels serve to strengthen formant 

representation in the IC by providing a secondary code of formant frequencies. Consider 

SCHR stimuli—the chirps contained within SCHR harmonic complexes are the result of 

phase-differences between harmonic components. In vowels, vocal tract resonances 

shape phase spectra, centered around formant frequencies, implying that formant 

frequencies coincide with phase inflections. Congruently, group-delay functions tracking 

time delay across frequencies indicate that group-delay peaks around formant 

frequencies, resulting in spectrotemporal fluctuations at formant frequencies (Bozkurt et 

al., 2006; Rajan et al., 2013). 

In the final part of these studies, we aimed to assess the impact on vowel coding 

of chirp sensitivity. We tested the hypothesis that vowel phase properties would amount 

to a cue usable by chirp-sensitive IC neurons, and that chirp sensitivity would impact 

coding of vowels in both physiological and modeling methods. 

One outcome of this study was the development of a chirp-identification strategy 

based on component decomposition. Given an input vowel, the power spectrum was 

used to approximate component frequencies—then parameter optimization was utilized 

to fit a sinusoid to these estimated components, matching phase and magnitude. Finally, 
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a synthetic version of the original vowel could be generated, with clearly defined phase 

between harmonic components. These synthetic vowels revealed the presence of time 

delays centered around formant frequencies, as well as inflections spanning between 

these frequencies of a similar velocity to chirps used in prior studies (i.e., aperiodic chirp 

stimulus). 

Steady-state vowel tokens from the Hillenbrand et al. (1995) database were 

presented to physiological IC units with characterized CFs, MTFs, and RVFs. Based on 

spike train data in response to 12 vowels, /iy, ih, ei, eh, ae, ah, aw, oo, uw, er, oa, uh/, 

each neuron was assessed on ability to distinguish vowels based on average rate and 

spike timing. The spike timing metric used was the rate-independent spike (RIS) 

distance, a measure of the temporal similarity between two spike trains independent of 

local rate (Satuvuori et al., 2017). Vowel classification accuracies were assessed on a 

vowel-by-vowel basis as well as by overall accuracy; classification based on timing was 

found to be universally more accurate than rate. Comparing individual neurons with 

different RVFs, no distinguishable patterns emerged in classification accuracies. 

Using PCA, PC2 (direction-independent velocity sensitivity) was found to 

correlate positively to overall accuracy of classification using timing. Furthermore, 

direction bias at high-velocities (> 2 kHz) was also found to be positively correlated to 

accuracy of classification using rate or timing. However, in both cases the amount of 

variance explained was relatively low—although, in light of a similar result in chapter 2 

that showed MTFs explaining more variance in SCHR responses than RVFs, this is a 

consistent finding. 
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Finally, model neurons with similar characteristics to select units from physiology 

were presented with Hillenbrand vowels stimuli. The classification accuracy of model 

vowels was compared to their correlates from physiology. Altogether, model neurons 

failed to predict classification trends in corresponding physiology neurons, suggesting 

that the IC chirp model is missing an unknown element. Alternatively, it could suggest 

that the IC chirp model, which was foremost conceptualized as way to simulate chirp 

direction bias, may need additional work to add direction-independent velocity sensitivity, 

the RVF feature towards which the highest correlation to classification accuracy was 

observed. 

1.4 Overview of the thesis 

Chapter 1 introduces the importance of sound features and peripheral 

nonlinearities in developing the basis of complex sound coding in the auditory system. 

Also, the importance of the IC as a point of integration is highlighted, since it serves as 

the first stage in which such a code of complex sounds might be realized. 

Chapter 2 has been published in Hearing Research, and describes methods and 

results surrounding the physiological recordings and experiments undertaken to 

characterize and define chirp direction and velocity as a separate sound-feature towards 

which the IC is sensitive. This chapter introduces crucial tools such as the aperiodic 

chirp stimulus, RVF, and ROC-direction bias. 

Chapter 3 has been published in the Journal of Computational Neuroscience. It 

describes the architecture of the chirp-sensitive IC model, the implementation of 

sequence detection in the octopus-cell stage, and the combination of chirp-sensitivity 

with AM tuning at the IC stage. Also, parameters for example model neurons spanning 
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the range of chirp-sensitive neurons observed in physiology are proposed, with the 

impact of changing individual parameters additionally explored. 

Chapter 4 is unpublished work that compares responses of neurons recorded in 

physiology to corresponding neurons simulated by the chirp-sensitive model. Neurons 

are assessed in their ability to distinguish vowels based on rate and timing classification. 

A trend is established between chirp velocity and direction sensitivity and classification 

accuracy. Also, a method of quantifying and visualizing chirps contained within vowels is 

proposed. 

Finally, in Chapter 5, we present a discussion of the overall work, as well as 

future directions to take research on chirp-sensitivity of the IC. 
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Chapter 2: Sensitivity to Direction and Velocity of Fast 

Frequency Chirps in the Inferior Colliculus of Awake Rabbit 

This chapter is published in Hearing Research. 

2.1 Abstract 

 Neurons in the mammalian inferior colliculus (IC) are sensitive to the velocity 

(speed and direction) of fast frequency chirps contained in Schroeder-phase harmonic 

complexes (SCHR). However, IC neurons are also sensitive to stimulus periodicity, a 

prominent feature of SCHR stimuli. Here, to disentangle velocity sensitivity from 

periodicity tuning, we introduced a novel stimulus consisting of aperiodic random chirps. 

Extracellular, single-unit recordings were made in the IC of Dutch-belted rabbits in 

response to both SCHR and aperiodic chirps. Rate-velocity functions were constructed 

from aperiodic-chirp responses and compared to SCHR rate profiles, revealing 

interactions between stimulus periodicity and neural velocity sensitivity. A generalized 

linear model analysis demonstrated that periodicity tuning influences SCHR response 

rates more strongly than velocity sensitivity. Principal component analysis of rate-

velocity functions revealed that neurons were more often sensitive to the direction of 

lower-velocity chirps and were less often sensitive to the direction of higher-velocity 

chirps. Overall, these results demonstrate that sensitivity to chirp velocity is common in 

the IC. Harmonic sounds with complex phase spectra, such as speech and music, 

contain chirps, and velocity sensitivity would shape IC responses to these sounds. 
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2.2 Introduction 

 The inferior colliculus (IC) receives convergent excitatory and inhibitory inputs 

from several auditory brainstem nuclei, and consequently displays a variety of complex 

response properties including frequency tuning (Davis, 2005), sensitivity to interaural 

differences (Yin et al., 2019), duration tuning (Casseday et al., 1994), and tuning to 

amplitude modulation (AM) (Langner and Schreiner, 1988; Krishna and Semple, 2000). 

Sensitivity of IC neurons to the velocity (speed and direction) of frequency sweeps has 

also been studied. Studies of bat IC responses report neurons that prefer, or even 

respond exclusively to, a particular sweep direction, a possible adaptation for 

echolocation (Suga, 1965; Fuzessery, 1994; Fuzessery and Hall, 1996; Gordon and 

O’Neill, 1998; Pollak et al., 2011). Additionally, sounds with statistics resembling vocal 

spectral-peak (formant) transitions have been used to produce IC spectrotemporal 

receptive fields (STRFs) in cats and bats (Escabí and Schreiner, 2002; Escabí et al., 

2003; Andoni et al., 2007). 

 Recently, IC sensitivity to the velocity of sweeps has been explored in 

anesthetized gerbils (Steenken et al., 2022) and awake budgerigars (Henry et al., 2023). 

These studies used Schroeder-phase (SCHR) harmonic complexes, an advantageous 

stimulus for studying frequency-sweep sensitivity. The harmonic components of SCHR 

stimuli have flat magnitude spectra and curved phase spectra that create periodic 

acoustic waveforms with maximally flat temporal envelopes (Schroeder, 1970). The 

phase differences across harmonic components result in linear frequency sweeps within 

each fundamental period, extending from the lowest component, typically the 

fundamental frequency (F0) or its first harmonic, to the highest harmonic component. 
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 As a tool for interrogating neural velocity sensitivity, the SCHR stimulus is unique 

in several ways. First, SCHR stimuli are notable for the speed of frequency sweeps, 

which travel from F0 to the maximum harmonic (here, 16 kHz) over the fundamental 

period (here, between 2.5 and 20 ms). The resulting velocities are faster than most 

commonly studied frequency-modulated signals, such as formant transitions (Liberman 

and Mattingly, 1989). We refer to these fast sweeps as SCHR chirps. Second, as a 

harmonic complex, the SCHR stimulus resembles voiced speech sounds. SCHR chirps 

emerge from phase differences between harmonic components. Similar phase 

differences are present in sounds like vowels, introduced into the glottal pulse by vocal-

tract filtering. Therefore, neural sensitivity to chirp velocity would likely influence IC 

responses to speech sounds. 

 However, as harmonic stimuli, SCHR stimuli also have strong periodicity. IC 

neurons are notable for their tuning to the modulation frequency of amplitude-modulated 

(AM) sounds, often having enhanced or suppressed response rates to AM stimuli 

relative to an unmodulated stimulus (Krishna and Semple, 2000; Joris et al., 2004; Kim 

et al., 2020). It is unclear whether sensitivity to chirps requires a periodic context and 

whether the sensitivity is modulated by stimulus periodicity. Here, we use a new stimulus 

that isolated the velocity sensitivity from periodicity tuning. We recorded IC responses to 

both periodic SCHR stimuli and to aperiodic, random-chirp stimuli to assess velocity 

sensitivity. We explored the differences in prevalence of direction selectivity between the 

two stimuli and quantified the relative contributions of periodicity and velocity sensitivity 

in predicting SCHR response rates.  
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2.3 Methods 

 Extracellular, single-unit recordings were made in the central nucleus of the IC 

(ICC) of six female Dutch-belted rabbits (Oryctolagus cuniculus). Rabbits were obtained 

from Envigo (Denver, PA). The age of the animals during experiments ranged from 1-5 

years, during which distortion-product otoacoustic emissions (DPOAEs) and IC neural 

thresholds were used to confirm normal hearing (Whitehead et al., 1992). Animals were 

housed in separate cages in the same room, with a 12-hour light cycle from 6 AM to 6 

PM. Animals were removed from the study when their DPOAE magnitudes decreased or 

neural thresholds increased. All methods were approved by the University of Rochester 

Committee on Animal Resources. 

2.3.1 Recordings 

 Recordings were made in daily two-hour sessions between 9 AM and 4 PM in 

sound-attenuated booths (Acoustic Systems, Austin, TX, USA). To prevent head 

movement of the awake rabbits, a headbar (metal or 3D-printed plastic) was surgically 

affixed to the skull using stainless-steel screws and dental acrylic. Rabbits were 

anesthetized using ketamine (66 mg/kg) and xylazine (2 mg/kg), administered 

intramuscularly, for headbar placement, craniotomy, and electrode placements (below). 

Rabbits were wrapped in a towel and secured in a custom-made chair to limit movement 

during recording sessions.  

Recordings were made using four tetrodes, each consisting of four 18-μm 

platinum-iridium epoxy-coated wires (California Fine Wire Co., Grover Beach, CA, USA) 

and plated with platinum black to obtain impedances of approximately 0.1 – 0.5 MOhms. 

Tetrodes were surgically implanted in the ICC via a small (~2-mm diameter) craniotomy 
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in the top of the skull. Stainless-steel guide tubes protected the tetrodes, which were 

positioned just dorsal to the ICC and then advanced through the ICC using a manual 

microdrive (Five-drive, Neuralynx, Inc., Bozeman, MT, USA). Tetrodes were advanced 

before or after recording sessions.  The microdrive and tetrodes were surgically replaced 

every few months, as needed, to vary the recording location. Neural recordings were 

made using an RHD recording system (Intan Technologies, LLC., Los Angeles, CA, 

USA), with Intan software running on a Windows PC.  

 Stimuli were generated using custom MATLAB code (Mathworks, Natick, MA, 

USA), a MOTU audio interface (16A, Mark of the Unicorn, Cambridge, MA, USA), and a 

Benchmark digital-to-analog converter and amplifier (DAC3 HGC, Benchmark Media 

Systems, Inc., Syracuse, NY, USA). Etymotic ER2 earphones (Etymotic Research, Inc., 

Elk Grove Village, IL, USA) were used to present sound stimuli via custom ear molds 

(Hal-Hen Company, Inc., Garden City Park, New York, USA). Prior to every session, 

stimuli were calibrated using ER-7C probe-tube or ER-10B+ microphones (Etymotic 

Research, Inc., USA). The calibration curve (magnitude and phase) was included in a 

pre-emphasis filter that compensated all stimuli for the frequency response of the 

acoustic system. 

 Action potential times and waveforms were extracted from neural recordings 

using custom MATLAB applications. To identify single-unit events, the voltage recording 

was filtered using a 4th-order Butterworth bandpass filter (300 – 3000 Hz). An action 

potential was identified when the filtered voltage signal exceeded a threshold, defined as 

four standard deviations of the voltage signal. Action potentials were sorted into clusters, 

presumed to represent different neurons, using features of the waveforms, primarily the 

slope of the waveform repolarization (Schwarz et al., 2012). Single-units were identified 
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when less than 2% of the interspike intervals were shorter than 1 ms. Neurons studied in 

consecutive sessions were considered to be unique only when both tetrode location and 

response properties changed.    

2.3.2 Stimuli 

 A set of stimuli was presented to define neural response properties, including 

frequency response maps, modulation transfer functions, SCHR sensitivity, and rate-

velocity functions for aperiodic-chirp stimuli. To generate frequency response maps, a 

randomly-ordered sequence of 0.2-s-duration tones at frequencies ranging from 250 Hz 

– 16 kHz was presented at 13, 33, 53, and 73 dB SPL. Tones were presented either 

contralaterally or diotically with 10-ms raised-cosine on/off ramps, and were separated 

by 0.4 s of silence. Each stimulus condition was presented three times. Response maps, 

plots of average discharge rate vs. frequency at each stimulus level, were used to 

estimate characteristic frequency (CF), the frequency for which threshold was lowest. 

 Modulation transfer functions (MTFs) were estimated by computing the average 

rate in response to 100% sinusoidally amplitude-modulated noise as a function of 

modulation frequency, over a range of 2 – 350 Hz, with 3 steps per octave. The 

wideband noise (100 Hz – 10 kHz) was 1 s in duration, including 50-ms raised-cosine 

on/off ramps, presented diotically. Modulation frequencies were presented in random 

order, with 5 repetitions of each. Noise presentations were separated by 0.5 s of silence. 

Stimuli were presented at a spectrum level of 33 dB (overall level of 73 dB SPL). MTF 

categorization was based on criteria that were slightly modified from Kim et al. (2020). 

MTF types were categorized as band-enhanced (BE) if (1) the MTF had two consecutive 

points significantly greater than 120% of the unmodulated rate (𝑟𝑟𝑢𝑢𝑢𝑢), and (2) the MTF did 
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not have more than one point significantly below 80% of 𝑟𝑟𝑢𝑢𝑢𝑢. Similarly, MTFs were 

categorized as band-suppressed (BS) if (1) the MTF had two consecutive points 

significantly less than 80% of 𝑟𝑟𝑢𝑢𝑢𝑢, and (2) the MTF did not have more than one point 

significantly above 120% of 𝑟𝑟𝑢𝑢𝑢𝑢. MTFs that had both enhanced and suppressed bands 

that met the above criteria were categorized as hybrid MTFs. In the population of MTFs 

studied (N = 335), 177 (52.8%) were BS, 73 (21.8%) were BE, 51 (15.2%) were hybrid, 

and 34 (10.2%) were flat. 

SCHR stimuli were produced using the phase spectrum introduced in Schroeder 

(1970) (Fig. 2.1A-D). For a harmonic complex with 𝐶𝐶 components, the phase of the 𝐶𝐶th 

component was described by 𝜃𝜃𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶 + 1)/𝑁𝑁, where 𝑁𝑁 is the total number of 

harmonic components, and 𝐶𝐶 is a scalar that describes the phase-direction and duty 

cycle of the stimulus. SCHR stimuli with a positive C-value will be referred to as 

downward SCHR, reflecting the direction of their frequency chirps. SCHR stimuli with a 

negative C-value will be referred to as upward SCHR. Note that the direction of SCHR 

chirp (upward or downward) is the opposite of its phase (negative or positive, 

respectively). A random sequence of SCHR stimuli was presented, with F0 equal to 50, 

100, 200, or 400 Hz, and C equal to -1, -0.5, 0.5, or 1. For all cases, the frequency of the 

highest harmonic component was 16 kHz. The number of harmonic components, 𝑁𝑁, 

depended on F0, and ranged between 40 and 320. Thirty repetitions of each F0 and C 

combination were presented. Stimuli were presented diotically at 63 dB SPL, with a 

duration of 0.4 seconds, 0.6 seconds of silence between stimuli, and 25-ms raised-

cosine on/off ramps. Average discharge rates over the stimulus duration were calculated 

for each F0 and C combination, excluding a 25-ms window after stimulus onset. 

Receiver-operating-characteristic (ROC) analysis (Egan, 1975) was used to evaluate 
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neural direction selectivity for SCHR conditions with equivalent F0 and C-values of 

opposite signs (e.g., F0 = 50 Hz, C = ±1). For this analysis, the response rates for each 

stimulus repetition were gathered, for chirps of equal speed but opposite direction. Then, 

ROC was used to measure the discriminability of chirp direction based on response 

rates of single stimulus repetitions. Neurons were deemed significantly biased toward 

one sweep direction if the ROC area under the curve (AUC) was above 70.7% or below 

29.3%. The two separate ROC criteria were used to differentiate between selectivity for 

upward and downward chirps (akin to a two-tailed t-test). Neurons with AUCs above 

70.7% were designated as selective for upward chirps (indicating greater mean 

response rate in response to upward chirps) and neurons with AUCs below 29.3% were 

designated as selective for downward chirps. The ROC criteria of 70.7% and 29.3% 
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were chosen because they are equivalent to the targeted threshold of a two-down, one-

up psychophysical procedure (Levitt, 1971). 

 

Figure 2.1 – Stimulus waveforms of SCHR and aperiodic-chirp stimuli. Note that the 
maximum harmonic in this figure is 5 kHz for clarity; in the actual stimuli, maximum 
harmonic was 16 kHz. (A) Downward SCHR with F0 = 50 Hz, C = +1. (B) Upward SCHR 
with F0 = 50 Hz, C = -1. (C) Upward SCHR with F0 = 100 Hz, C = -1. (D) Upward SCHR 
with F0 = 50 Hz, C = -0.5. (E) Two consecutive aperiodic chirps separated by silence. 

 Rate-velocity functions (RVFs) were based on responses to aperiodic-chirp 

stimuli consisting of isolated SCHR chirps separated by silent periods of variable 

duration. These chirps were single fundamental periods extracted from a SCHR 

stimulus, equivalent to one full SCHR chirp spanning F0 to the maximum harmonic, or 
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vice versa (Fig. 2.1E). To produce the stimulus waveforms, first, we generated a random 

sequence of chirp velocities that were equivalent to SCHR F0s of 25, 50, 100, 200, 400, 

and 600 Hz. Chirp direction (upward or downward, i.e., C = -1 and C = 1, respectively) 

was also randomly varied across stimuli. These parameters together resulted in 

aperiodic chirps with velocities ±0.40, ±0.80, ±1.59, ±3.16, ±6.24, and ±9.24 kHz/ms. 

Each combination of velocity and direction was presented a total of 42 times, in random 

order. To avoid periodicity, chirps were randomly spaced, using 40 – 60 ms uniformly 

distributed inter-chirp intervals. The full stimulus set was presented 20 times. Each 

individual chirp had raised-cosine on/off ramps, each with duration equivalent to 10% of 

chirp duration. Chirps were presented diotically at a sound level equal to 68 dB SPL −

10 × log10(𝑇𝑇/𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟), where 𝑇𝑇 is the duration of the chirp, and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 2.5 ms (the duration 

of a SCHR chirp with F0 = 400 Hz). This scaling ensured that energy was equivalent 

across chirps of different durations.  

Response rate was calculated by summing spikes over a 15-ms time window 

starting at an estimate of the neural latency (Fig. 2.2) based on the response to a 73-dB 

tone at CF (from the response map). In cases where a neuron responded to 73-dB SPL 

tones over a wide frequency range, the neural latency to a chirp was sometimes 

substantially shorter than would be predicted by the latency at CF, as expected if 

instantaneous frequencies well below or above CF excited the neuron. In these cases 

(approximately a quarter of the neurons), the latency estimates were adjusted based on 

the frequency range over which the neuron responded. ROC analysis of aperiodic-chirp 

rates was performed in an identical manner as for SCHR rates. Aperiodic-chirp rates 

were used to generate an RVF, which described how a neuron’s rate changed as a 

function of chirp velocity (Figs. 2.3-4).  
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Figure 2.2 – A visual depiction of aperiodic-chirp stimulus rate calculation. Black lines 
illustrate PSTHs (bin size = 0.5 ms) of responses to chirps of different velocities. Orange 
lines indicate the instantaneous frequency of the aperiodic chirp over time. The left 
column (red text) shows downward chirps, and the right column (blue text) shows 
upward chirps. Orange circles indicate when the instantaneous frequency of the chirp 
passes CF (here, 3500 Hz). The shaded rectangles indicate the placement of the 15-ms 
window over which response rate was calculated.  

2.3.3 Analysis 

Principal Component Analysis (PCA) was performed to identify the salient 

features in RVFs, using the MATLAB function PCA (2021b, MathWorks). PCA analysis 

allowed grouping of RVFs by their shape to gain insight into underlying patterns or 

trends. RVFs were normalized by their individual peak rates before PCA analysis. SCHR 

responses were predicted based on MTFs and RVFs using generalized linear models 

(GLMs) (Nelder and Wedderburn, 1972). First, SCHR rates, MTFs, and RVFs were 
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normalized by each of their maximum rates. For the responses to periodic stimuli, (MTF 

and SCHR), cycle rate was used, defined as the average rate per fundamental period. 

Cycle rate (spikes/cycle) was necessary to compare responses to periodic stimuli and 

aperiodic chirps. For the aperiodic-chirp stimulus, rate was calculated using the method 

described above (Fig. 2.2). The periodicity and velocity of each SCHR stimulus was 

matched with the closest available modulation frequency and velocity from the MTF and 

RVF, respectively (data were not interpolated), creating a feature vector of the 

responses to periodicity and velocity changes. Then, a relationship between the 

periodicity and velocity feature vectors and SCHR rates was defined for the GLM, as 

follows: 

𝑅𝑅𝑆𝑆 = 𝑏𝑏𝑃𝑃𝑅𝑅𝑃𝑃 + 𝑏𝑏𝑉𝑉𝑅𝑅𝑉𝑉 + 𝑏𝑏𝐼𝐼(𝑅𝑅𝑃𝑃 ∗ 𝑅𝑅𝑉𝑉) + 𝑏𝑏0    ,               (Eqn. 1) 

where 𝑅𝑅𝑃𝑃 and 𝑅𝑅𝑉𝑉 refer to rates of the periodicity and velocity feature vectors, 

respectively. 𝑅𝑅𝑆𝑆 is the predicted response to SCHR stimuli in cycle rate, and 𝑏𝑏𝑛𝑛 are the 

GLM coefficients. There were three terms in the GLM—a periodicity term, a velocity 

term, and an interaction term. GLM coefficients were estimated using the MATLAB 

function glmfit (2021b, MathWorks), with the distribution argument set to normal and 

constant argument set to on. The GLM coefficients were 𝑏𝑏𝑃𝑃, the periodicity coefficient, 

𝑏𝑏𝑉𝑉, the velocity coefficient, 𝑏𝑏𝐼𝐼, the interaction-term coefficient, and 𝑏𝑏0, a constant. A two-

sided t-test was performed on the coefficients against the null hypothesis that the value 

of the coefficient was zero. After the SCHR rate prediction was calculated using 

estimated coefficients, the coefficient of determination (𝑅𝑅2) of the predicted and recorded 

SCHR cycle rates was determined to assess prediction quality. This process was 

repeated for two additional, simpler GLMs: 
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𝑅𝑅𝑆𝑆 = 𝑏𝑏1𝑅𝑅𝑃𝑃 + 𝑏𝑏0   ,   and             (Eqn. 2) 

𝑅𝑅𝑆𝑆 = 𝑏𝑏1𝑅𝑅𝑉𝑉 + 𝑏𝑏0  .              (Eqn. 3) 

These simpler GLMs depended only on one feature vector and thus could be used to 

assess the importance of periodicity or velocity alone. The coefficients of determination 

(𝑅𝑅2) of these two model predictions were obtained and used to measure the impact of 

the two features on neurons’ SCHR responses. 

 The following equation was used to calculate the contribution of velocity to the 

total explainable variance: 

𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑃𝑃𝑟𝑟𝑐𝑐𝑏𝑏𝑐𝑐𝑃𝑃𝑐𝑐𝑐𝑐𝐶𝐶 𝑐𝑐𝑜𝑜 𝑣𝑣𝑃𝑃𝑣𝑣𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑣𝑣 𝑃𝑃𝑐𝑐 𝑅𝑅2 =  �𝑅𝑅
2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑅𝑅2𝑝𝑝𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝�

𝑅𝑅2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 100 ,       (Eqn. 4) 

where 𝑅𝑅2𝑐𝑐𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟𝑐𝑐 and 𝑅𝑅2𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 refer to the coefficient of determination of the 

combined model (Eqn. 1) and periodicity-alone model (Eqn. 2), respectively. Equation 4 

allowed the amount of additional variance explained by the inclusion of velocity (either in 

the velocity term or interaction term in Eqn. 1) to be directly quantified.  

2.4 Results 

2.4.1 Examples of responses to SCHR and aperiodic-chirp stimuli 

 Data were recorded over a span of 330 sessions and included recordings from 

335 unique single units. Response properties of single-unit neurons are illustrated using 

frequency response maps, MTFs, SCHR rate functions, and RVFs (Figs. 2.3 and 2.4). 

Frequency response maps were used to determine CF; for neurons with spontaneous 

activity, these plots also revealed off-CF inhibitory regions. MTFs were categorized by 

shape (i.e., BE, BS, hybrid, or flat). SCHR rate functions were generated by summing 
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the total response over the duration of the periodic SCHR stimulus. Lastly, RVFs, which 

reflect velocity sensitivity in the absence of a periodic context, were constructed from 

aperiodic-chirp responses. Altogether, these stimulus responses were used to assess 

the interactions of different feature sensitivities, particularly to periodicity and velocity, in 

determining the SCHR responses.  

 

Figure 2.3 - Responses of unit R24TT2P8N4 to characterizing stimuli. (A) Response 
Map – Panels are arranged vertically by sound level of pure tones. Color plots reflect 
response rate versus frequency (x-axis) and time following tone onset (y-axis); magenta 
regions have increased activity relative to spontaneous rate, and green regions have 
decreased activity relative to spontaneous rate. (B) Modulation Transfer Function – rate 
versus modulation frequency. The grey horizontal line reflects unmodulated rate. (C) 
SCHR response rates plotted as a function of chirp velocity. Solid lines are used for C = 
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±1, and dashed lines are used for C = ±0.5. Line color denotes chirps of equivalent 
direction (red—downward chirp, blue—upward chirp). Symbols are used to reflect SCHR 
F0, with circles, triangles, squares, and diamonds corresponding to 50, 100, 200, and 
400 Hz respectively. (D) Rate-velocity function – constructed using responses to 
aperiodic-chirp stimuli. Error bars are the standard error of rates across repetitions (20 
each). 

 Example responses for two neurons are illustrated in Figs. 2.3 and 2.4. The 

neuron in Fig. 2.3 had a BE MTF (Fig. 2.3B) and a predominantly excitatory response 

map with a CF of 2 kHz (Fig. 2.3A). This neuron had chirp sensitivity in response to 

SCHR stimuli that was influenced by stimulus periodicity. In the SCHR rate function, for 

C = ±1 (Fig. 2.3C, solid lines) a greater response rate to downward chirps was observed 

for all but the highest velocity. This velocity corresponded to a 400-Hz F0, a modulation 

rate for which the neuron did not have an enhanced rate in its MTF. In comparison, the 

RVF (Fig. 2.3D) had a stronger rate selectivity for downward chirps at all velocities, 

including the high-velocity range at which the SCHR rates were not selective. Thus, the 

neuron’s sensitivity to the velocity of SCHR chirps was impacted by stimulus periodicity, 

albeit both the SCHR responses and RVF were generally selective for the same chirp 

direction. It is notable that the C = ±0.5 SCHR responses (Fig. 2.3C, dashed lines) also 

differed from the responses to the aperiodic RVF, with rates that tapered off as 

modulation rate increased. 

 Other neurons’ SCHR responses were more strongly impacted by their 

periodicity tuning, even showing opposite chirp direction selectivity to that of their RVF. 

An example of such a neuron is shown in Fig. 2.4 which had a BS MTF (Fig. 2.4B) with 

the suppressed band approaching zero rate. The response map (Fig. 2.4A) was tuned to 

1.2 kHz with a low threshold (13 dB SPL), and a high-frequency inhibitory region at 

higher sound levels. This unit’s SCHR response (Fig. 2.4C) and RVF (Fig. 2.4D) were 
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quite different from one another. The SCHR rate function had higher responses to 

downward chirps at most velocities. In contrast, the RVF displayed a higher rate for 

upward chirps for most velocity pairs. Notably, for C = ±1 SCHR stimuli (Fig. 2.4C, solid 

lines), the two lowest velocity-pairs corresponded to modulation rates in the trough 

region of the BS MTF. While the mechanism for this apparent direction reversal cannot 

be ascertained from the MTF alone, it is apparent that the periodic nature of the SCHR 

signal can change the chirp-direction sensitivity for some neurons.  
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Figure 2.4 - Responses of unit R24TT4P7N2 to characterizing stimuli. (A) Response 
Map, (B) Modulation Transfer Function, (C) SCHR dot-raster plot, (D) Rate-Velocity 
Function. Figure description identical to Fig. 2.3. 

2.4.2 The prevalence of direction selectivity is influenced by stimulus periodicity 

The prevalence of direction selectivity in response to both SCHR and aperiodic-

chirp stimuli was quantified for the population of recorded neurons using ROC analysis. 

SCHR response rates were organized by F0 and C magnitude and grouped by chirp 

direction (sign of C). Aperiodic-chirp responses were compared between chirps of equal 

speed and opposite direction. Neurons for which response rate allowed direction to be 
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discriminated 70.7% of the time via the ROC test were labeled direction-sensitive for the 

discriminated pair. 

 The ROC results across MTF groups suggest that prevalence of chirp-direction 

selectivity was impacted by the periodicity of the stimulus. When separated into groups 

based on MTF type, BS neurons were significantly less likely to be direction-selective to 

SCHR chirps than to aperiodic chirps (χ2 test of independence, Fig. 2.5). These 

significant differences were seen for F0s of 50 and 100 Hz, which correspond to typical 

modulation-frequency ranges for troughs in BS MTFs (Kim et al., 2020), and were likely 

a result of the SCHR-stimulus periodicity—the response to these SCHR F0s was 

suppressed, reducing sensitivity to chirp direction (as in Fig. 2.4). Furthermore, the 

prevalence of direction selectivity in BE and hybrid neurons was not significantly different 

between SCHR and aperiodic chirps for any chirp speed or SCHR F0 (Fig. 2.5). 

Responses to SCHR F0s that corresponded to peak modulation frequency values in BE 

and hybrid neurons were relatively unaffected, compared to responses to other SCHR 

F0s—for example, in Fig. 2.3C the direction bias at SCHR F0 50, 100, and 200 Hz was 

close to that of the corresponding velocities in the RVF (Fig 2.3D). However, the 

absence of direction bias at SCHR F0 400 Hz (Fig. 2.3C) demonstrates that chirp-

direction selectivity may still be affected for an F0 outside the enhanced band. Overall, 

neurons were generally more sensitive to aperiodic chirps than to SCHR chirps, 

suggesting that stimulus periodicity may partially suppress chirp-velocity sensitivity in 

SCHR responses, especially in BS neurons.  
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Figure 2.5 - Percent of direction-selective neurons determined by ROC analysis for 
different MTF shapes. For each MTF shape, the left bar shows the percent of neurons 
selective for SCHR chirps, and the right bar shows the percent selective for aperiodic 
chirps (labeled APR). Chart row reflects the stimulus F0 for SCHR selectivity, or the 
equivalent SCHR F0 for aperiodic chirp-direction selectivity (the corresponding absolute 
velocities are 0.80, 1.59, 3.16, and 6.24 kHz/ms). Blue bar-segments correspond to 
upward-selective neurons, and red bar-segments correspond to downward-selective 
neurons. Brackets indicate significant differences of direction selectivity prevalence 
between groups, as determined by the χ2 test of independence, with asterisks indicating 
the level of significance (* p < 0.05, *** p < 0.001). p-values for each significant 
difference were 50 Hz—BS, p = 0.0001; 50 Hz—Flat, p = 0.0496; 100 Hz—BS, p < 
0.0001. 

 Separating the ROC results by CF-range shows that stimulus periodicity impacts 

the prevalence of chirp-direction selectivity especially for higher-CF neurons (Fig. 2.6). 

Neurons in the high-CF (>6 kHz) range were direction-selective significantly more often 

for aperiodic chirps than for SCHR chirps, compared to low-CF (<3 kHz) and mid-CF (3-
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6 kHz) neurons (χ2 test of independence, Fig. 2.6 caption). This trend in high-CF 

neurons was observed for 50-, 100-, and 200-Hz-equivalent chirps, but not for 400-Hz-

equivalent chirps.  

 

Figure 2.6—Percent of direction-selective neurons determined by ROC analysis for 
different CF groups—low (<3 kHz), mid (3-6 kHz), and high (>6 kHz). For each CF 
group, the left bar shows the percent of neurons selective for SCHR chirps, and the right 
bar shows the percent selective for aperiodic chirps (labeled APR). Chart row reflects 
the stimulus F0 for SCHR selectivity, or the equivalent SCHR F0 for aperiodic chirp-
direction selectivity (the corresponding absolute velocities are 0.80, 1.59, 3.16, and 6.24 
kHz/ms). Blue bar-segments correspond to upward-selective neurons, and red bar-
segments correspond to downward-selective neurons. Brackets indicate significant 
differences of direction selectivity prevalence between groups, as determined by the χ2 

test of independence, with asterisks indicating the level of significance (* p < 0.05, ** p < 
0.01, *** p < 0.001). p-values for each significant difference were 50 Hz—Low, p = 
0.0189; 50 Hz—High, p = 0.0018; 100 Hz—High, p < 0.0001; 200 Hz—High, p = 0.0002. 
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To quantify the prevalence of chirp-selectivity, the number of units that were 

selective at a minimum of one condition was determined. For SCHR responses, 90.5% 

of neurons had at least one direction-selective F0/C pair. For responses to aperiodic 

chirps, 99.6% of neurons had at least one direction-selective velocity pair. To ensure 

that a reasonable threshold was used for determining direction selectivity, responses to 

each chirp-direction pair were shuffled for each neuron, and an ROC test was performed 

on the shuffled responses. After shuffling the responses 1000 times, 3.2% of the 

neurons were selective at a minimum of one SCHR F0/C condition, and 13.3% were 

selective at a minimum of one aperiodic-chirp velocity pair. It is clear that the high 

prevalence of chirp-direction selectivity could not be due to variance in the data, 

suggesting that the criterion used in the ROC test (70.07%) was sufficiently high. 

2.4.3 Periodicity sensitivity has stronger influence on SCHR rate responses than 

does chirp-velocity sensitivity 

 We quantified the dependence of responses to SCHR stimuli on both AM 

(periodicity) tuning and velocity sensitivity. Using a GLM, MTFs and RVFs were used to 

predict SCHR responses. Figure 2.7 shows a visualization of this strategy for an 

example neuron (the same neuron depicted in Fig. 2.3). The SCHR response is shown 

as a surface plot on periodicity-velocity axes (Fig. 2.7A); darker colors correspond to 

higher response rates. This neuron responded more strongly to lower F0s and to 

downward SCHR. The shaded bars above and to the left of the SCHR surface are the 

MTF and RVF, respectively, and describe how the response rate depended on 

periodicity or velocity alone. Using a weighted combination of these two responses, the 

GLM predicted the SCHR response (Fig. 2.7B). By fitting an equation that included both 

periodicity and velocity terms (Eqn. 1), an accurate prediction of the recorded SCHR 
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data was made (𝑅𝑅2 = 0.98). Removing either the periodicity or velocity terms reduced 

the quality of the prediction (Fig. 2.7C, D). Predicting the SCHR response using the 

periodicity-only model (Eqn. 2) resulted in the disappearance of the distinct direction 

selectivity at lower F0s (Fig. 2.7C). As expected, a model using only periodicity tuning 

could not explain the observed direction selectivity. Conversely, a prediction of the 

SCHR responses using the velocity-only model (Eqn. 3) explained a relatively small 

amount of variance in the data (𝑅𝑅2 = 0.30). For most neurons (95%), more variance in 

the data was explained by the periodicity-only model than by the velocity-only model. 

 

Figure 2.7 – GLM prediction of SCHR rates for an example neuron (R24TT2P8N4; the 
same neuron as in Fig. 2.3). (A) SCHR rates plotted on periodicity-velocity axes (center 
surface). Each of the 16 points on the surface plot correspond to an individual SCHR 
F0/C-value combination – for instance, four points have a SCHR F0 of 50 Hz. Their 
velocities vary with C-value; the points’ C-values, from top to bottom, are -0.5, -1, 1, 0.5. 
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This surface plot demonstrates the effect of C-value on chirp velocity. The periodicity 
and velocity responses are plotted alongside the SCHR surface plot—these are the MTF 
and RVF, respectively. The modulation frequency range of the MTF was limited to the 
section relevant to the range of SCHR F0s (50 – 400 Hz). Rate is marked using color, 
with darker shades indicating larger rates. The rate scale of each surface plot is 
separately normalized by its own maximum rate—thus, shading does not reflect absolute 
rates. Surface plot colors are interpolated. (B) SCHR rates predicted using the combined 
GLM equation (Eqn. 1), which uses both periodicity and velocity cues. Coefficient of 
determination (R2) between predicted and recorded SCHR rates is also shown. (C) 
SCHR rates predicted using the periodicity-only GLM equation (Eqn. 2), and 
corresponding R2-value. (D) SCHR rates predicted using the velocity-only GLM equation 
(Eqn. 3), and corresponding R2-value. 

 Figure 2.8 illustrates the interaction of stimulus periodicity and velocity in the 

combined GLM model. For aperiodic-chirp velocities that closely matched the velocities 

of SCHR chirps with F0 equal to 50 Hz, a large aperiodic-chirp response rate predicts a 

large SCHR response rate (blue line). For higher F0s, aperiodic-chirp response rate had 

a smaller impact on the predicted SCHR response rate, with slopes approaching zero 

(200- and 400-Hz lines, yellow and purple). Therefore, despite the RVF suggesting a 

strong selectivity for downward sweeps at all velocities, Fig. 2.8 shows that the 

interaction between velocity and periodicity sensitivities resulted in lower SCHR 

response rates for high F0s and suppressed direction selectivity. Similar velocity-

periodicity interactions as illustrated in Fig. 2.8 were typical of many neurons in the 

study; the interaction term, 𝑏𝑏𝐼𝐼, for 24% of neurons was statistically significant in 

predicting SCHR response rates (two-sided t-test, p < 0.05). In comparison, the 

periodicity coefficient, 𝑏𝑏𝑃𝑃, was statistically significant for 40% of neurons, and the 

velocity coefficient, 𝑏𝑏𝑉𝑉, was significant for 7%. 
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Figure 2.8 – SCHR response rates vs aperiodic-chirp response rates of equivalent 
velocity for R24TT2P8N4. GLM predictions are shown as lines. Blue solid line and 
circles correspond to 50 Hz, orange dashed line and plus signs correspond to 100 Hz, 
yellow dotted line and crosses correspond to 200 Hz, and purple dash-dotted line and 
squares correspond to 400 Hz. Both SCHR and aperiodic-chirp rates are normalized by 
their own maximum rate. This example neuron is also shown in Figs. 2.3 and 2.7. 

 Using the method outlined above (Fig. 2.7), an 𝑅𝑅2 value was obtained for each of 

the three GLM models (Eqns. 2-4) by comparing model predictions to neural responses. 

The contribution of the velocity term to the total explainable variance was calculated as a 

percentage, using Eqn. 4. Figure 2.9 shows this percentage versus the variance 

explained by the combined model. For 95% of the neurons studied, periodicity was a 

more important feature than velocity in predicting SCHR response rates. In neurons with 

high explainable variance (80-100%), the contribution of velocity rarely exceeded 20%. 

Velocity was usually more important in neurons with a low overall explainable variance. 
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These results demonstrate that, while velocity sensitivity is critical to explain chirp-

direction sensitivity, the periodicity tuning tends to dominate the SCHR response rates.  

  
 

Figure 2.9 - Percent contribution of the velocity terms to the total explainable variance by 
the combined model vs. variance explained by the combined model. 

2.4.4 RVFs were often direction-selective at slower velocities and direction-

insensitive at higher velocities 

 Responses to aperiodic chirps isolate neural sensitivity to chirp velocity, so it is 

interesting to consider trends in these responses across cell groups. Figure 2.10 shows 

the results of ROC analysis for aperiodic-chirp responses, for neurons categorized by 

MTF type (Fig. 2.10A) and CF range (Fig. 2.10B). For both MTF type or CF range, there 

were no systematic differences between groups in prevalence of chirp-direction 

selectivity. Additionally, direction bias between both MTF groups and CF groups for a 

given chirp speed were comparable. However, one notable trend was that prevalence of 

selectivity decreased with increasing chirp speeds. Additionally, upward-selectivity was 
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more common for lower-speed chirps (0.80 kHz/ms absolute velocity and below), and 

downward-selectivity was more common for higher-speed chirps (1.59 kHz/ms absolute 

velocity and above). Overall, for aperiodic-chirp responses, there was not a trend across 

MTF types or CF, in either prevalence of direction selectivity or direction of bias. The 

direction selectivity observed was diverse, with both upward- and downward-selective 

units seen for every category. 
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Figure 2.10 – Percent of direction-selective neurons determined by ROC analysis, by 
aperiodic-chirp velocity. (A) Neurons are grouped by MTF shape (BE – Band-Enhanced, 
BS – Band-Suppressed, H – Hybrid, F – Flat). (B) Neurons are grouped by CF range—
low (<3 kHz), mid (3-6 kHz), and high (>6 kHz). Rows correspond to velocities of chirp 
duration, with velocities ±0.40, ±0.80, ±1.59, ±3.16, ±6.24, and ±9.24 kHz/ms 
corresponding to equivalent SCHR F0s of 25, 50, 100, 200, 400, and 600 Hz, 
respectively. Blue bar-segments correspond to upward-selective neurons, and red bar-
segments correspond to downward-selective neurons. Brackets indicate significant 
differences of direction selectivity prevalence between groups, as determined by the χ2 

test of independence, with asterisks indicating the level of significance (* p < 0.05, ** p < 
0.01).  p-values for each significant difference were ±0.40 kHz/ms—Low-High, p = 
0.0481; ±6.24 kHz/ms—Mid-High, p = 0.0083. 

As demonstrated by the ROC analysis performed on aperiodic-chirp responses, 

significant direction selectivity to aperiodic chirps was commonplace. However, this 

analysis only addressed selectivity between direction of chirp-pairs and not sensitivity to 

chirp velocity. Although RVFs revealed velocity sensitivity to aperiodic chirps for 

individual neurons (Figs. 2.3-4), further analysis was needed to characterize trends in 
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velocity sensitivity for the population of neurons. In order to identify the most common 

RVF characteristics, principal component analysis (PCA) was performed on the set of 

RVFs obtained from the population of single-units (247 in total). This approach reduced 

the dimensionality of the RVF dataset and extracted the principal components, or the 

features that explained the most variability in the population.  

Figure 2.11 shows the first three principal components, which together explained 

74.0% of the variance in the RVFs. Principal component 1 (PC1) had relatively high 

weights across high-magnitude velocities (3.16 kHz/ms and faster), showing that rate 

responses to high-velocity chirps tended to be positively correlated, regardless of 

direction. In other words, neurons responded similarly to either direction of high-velocity 

chirp. PC1 explained 48.5% of variance in the RVF data. Principal component 2 (PC2) 

had high weights at low-magnitude velocities (1.59 kHz/ms and slower), showing that 

rate responses to low-velocity chirps also tended to be positively correlated, regardless 

of direction. PC2 explained 13.8% of variance in the data. Finally, PC3 had large positive 

weights at slow upward velocities and negative weights at slow downward velocities 

(1.59 kHz/ms and slower), demonstrating that responses to upward and downward 

velocity chirps tended to be negatively correlated at slow velocities. PC3 was the main 

PCA dimension reflecting direction selectivity. PC3 explained 11.7% of variance in the 

data. 
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Figure 2.11 – Principal components derived from the set of RVFs (left, PC1; center, 
PC2; right, PC3). Y-axes reflect principal-component weights and are unitless. 

 The shapes of the first two principal components of the RVF data suggest that 

the most salient features of the RVF were the responses to high- and low-velocity chirps, 

rather than the direction of those chirps, with the boundary between these groups 

located at about 2 kHz/ms. PC3 showed that the direction selectivity was an important 

feature of these datasets; specifically, PC3 primarily represented selectivity to the 

direction of low-velocity chirps. In contrast, neural responses to chirps of high velocities 

depended more on chirp speed (magnitude of velocity) rather than direction, with the 

divide between low- and high-velocity chirps at about 2 kHz/ms. These results are 

consistent with the observation that direction selectivity to high-velocity chirps was not as 

common (Fig. 2.10).  

 Principal-component scores provide a measure of how well each RVF aligns with 

the principal components in Fig. 2.11, and thus are a useful way to divide the population 

based on type of velocity sensitivity. This approach also allowed a comparison of 

velocity sensitivity against other response properties, such as MTF type and CF. As 

shown in Fig. 2.12, there was not a clear relationship between the scores of principal 
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components 1-3 and either MTF type (symbol shapes) or CF (symbol colors). 

Furthermore, based on the scatter plots in Fig. 2.12, there were no clusters of neurons 

based on principal-component analysis – that is, RVF subgroups were not revealed by 

this analysis. This result suggests that a neuron’s RVF was not directly related to its 

MTF or CF. 

 

Figure 2.12 - Scatter plots depicting the Principal Component scores of each neuron, 
organized by MTF shape (A-C) and CF range (D-F). (A and D, PC2 vs PC1; B and E, 
PC3 vs PC1; C and F, PC3 vs PC2). In the top row (A-C), BE neurons are represented 
by yellow up-pointing triangles, BS neurons by purple down-pointing triangles, hybrid 
neurons by green circles, and other MTF shapes by black asterisks. In the bottom row 
(D-F), Low-CF neurons are represented by yellow up-pointing triangles, mid-CF by 
purple down-pointing triangles, and high-CF by green circles. 

2.5 Discussion 

This study demonstrated the diversity of sensitivity to the velocity of fast 

frequency chirps in the IC, for the first time in an awake rabbit model. Additionally, this 
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study introduced aperiodic-chirp stimuli as a way to isolate neural velocity sensitivity 

from periodicity tuning. ROC analysis was used to calculate the prevalence of chirp-

direction selectivity for responses to SCHR and aperiodic chirps. BS neurons were 

direction-selective significantly less often for SCHR chirps than for aperiodic chirps, 

suggesting that chirp sensitivity was suppressed for SCHR stimuli with F0s in the trough 

of BS MTFs. For all MTF-types, periodicity tuning influenced the overall rate responses 

to SCHR stimuli. Additionally, GLM analysis showed that more variance in SCHR data 

could be explained by periodicity than by velocity. This study also showed that individual 

neurons had a wide variety of rate-response profiles to aperiodic chirps, described using 

RVFs. RVFs revealed that neurons were more commonly direction-selective to chirps 

with velocities below 2 kHz/ms than above, and responded to chirps of velocities greater 

than 2 kHz/ms in a more direction-insensitive way. 

A common use of Schroeder-stimuli has been as a masker in psychophysical 

experiments evaluating detection of an increment in tone level. Notably, there is an 

impact of Schroeder-phase on the effectiveness of SCHR stimuli as maskers, with up to 

20-dB lower thresholds (less masking) for downward-SCHR maskers than for upward-

SCHR maskers (Smith et al., 1986). An explanation from the literature attributes this 

effect to asymmetry of filtering in the cochlea: phase-dispersive properties of the basilar-

membrane (BM) result in a peakier temporal response to downward than for upward 

SCHR stimuli. The peakier response is then compressed at the output of the cochlea, 

resulting in higher average energy in upward-SCHR BM responses compared to 

downward-SCHR responses, and thus more effective masking by upward SCHR stimuli 

(Recio and Rhode, 2000; Summers et al., 2003). This logic can also be applied to 

explain rate-differences between SCHR-chirp directions. However, the results here 
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suggest that other factors underlie the widespread chirp-direction selectivity of IC single-

units observed in this study. First, the phase-dispersion of the BM depends on CF 

(Ruggero et al., 1997; Carney et al., 1999; Shera, 2000), with neural masking 

differences in chinchilla observed primarily for CFs > 3-4 kHz (Recio, 2001). In this 

study, no consistent differences were observed in either the prevalence or direction of 

chirp-direction selectivity between low-CF (< 3 kHz) and mid- or high-CF (> 3 kHz) 

neurons in aperiodic-chirp response rates (Fig. 2.10b). Secondly, the cochlear 

dispersion hypothesis can only explain selectivity towards upward chirps; despite this, 

neurons with CF > 3 kHz could be selective for either direction of chirp (Fig. 2.10b), 

suggesting that cochlear phase-dispersion was not the basis of IC chirp sensitivity. 

Similarly, Henry et al. (2023) found diverse SCHR selectivity in the IC of budgerigars 

(parakeet), though a statistically significant gradient was observed from upward SCHR 

selectivity at CFs below 2-3 kHz to downward SCHR selectivity for higher CFs. These 

findings are also consistent with a recent study in gerbils (Steenken et al., 2022) that 

reported that average rates of AN fibers could not explain behavioral discrimination of 

SCHR stimuli, whereas temporal analyses of AN responses over short (1-ms) time 

windows could explain behavioral thresholds. Low correlations of AN rate to behavior 

provide further evidence against cochlear phase-dispersion driving IC selectivity. On the 

other hand, the presence of information for SCHR-direction discrimination in the 

relatively fine timing of AN fibers is consistent with neural mechanisms that combine 

temporal information across frequency channels. Finally, a recent study has shown that 

phase curvature of the extreme apical region of guinea pig and gerbil cochleae is 

different from other regions (Recio-Spinoso et al., 2023), complicating the statement that 

downward chirps always have peakier BM responses. This unique phase curvature may 
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influence processing of chirps containing low-frequency components, such as the SCHR 

and aperiodic chirps used in this study. 

A potential mechanism to explain the diverse chirp-response profiles seen in this 

study may be inhibitory inputs to the IC. IC neurons receive excitatory and inhibitory 

inputs with varying frequencies and latencies that may interact to produce chirp-direction 

selectivity (Pollak et al., 2011). Interactions between excitatory and inhibitory inputs 

varying in latency have long been implicated in mechanisms for frequency-sweep 

selectivity in bats (Suga, 1965; Fuzessery and Hall, 1996; Gordon and O’Neill, 1998). 

These mechanisms are broadly dependent on sideband inhibitory regions in excitatory 

tuning curves and the resulting asymmetry of responses to upward and downward 

frequency sweeps—this inhibition may arise from a variety of IC inputs. While not all 

response maps showed inhibitory sidebands, it is interesting to examine those that did 

within the framework of this theory. For instance, the neuron in Fig. 2.4 had an above-CF 

inhibitory sideband, with a longer duration and shorter latency than the excitatory band 

at higher sound levels. The location of this inhibitory sideband would predict a stronger 

response to upward chirps. Indeed, the RVF of this neuron is mostly biased towards 

upward chirps. The contribution of off-CF inhibition observed in response maps to 

interpreting chirp-direction sensitivity in the IC population studied here was precluded by 

the low-spontaneous rates of most IC neurons. To more comprehensively assess the 

effect of inhibition on chirp sensitivity, response maps using pure tones in background 

noise could be measured—this would be an interesting direction for a future study.  

Another mechanism for chirp-direction selectivity was proposed by Rall (1969), 

based on dendritic filtering of several excitatory inputs organized spatially by frequency. 

In Rall’s framework, a sweep that activates distal dendrites first, and proximal dendrites 
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later, would temporally sum and generate a large synaptic input. This mechanism has 

been hypothesized to underlie the frequency-sweep direction selectivity of octopus cells 

in the posteroventral cochlear nucleus (Godfrey et al., 1975; Rhode and Smith, 1986; Lu 

et al., 2022). Notably, octopus cells project to the ventral nucleus of the lateral lemniscus 

(VNLL), which provides inhibitory innervation to the IC (Adams, 1997; Vater et al., 1997; 

Winer et al., 1995). Thus, direction selectivity of octopus cells, by way of the VNLL, may 

explain chirp-direction selectivity in the IC; in this scenario, responses to chirps in one 

direction would be inhibited by input from the VNLL and disinhibited by chirps in the 

opposite direction. The possibility that IC chirp sensitivity originates in octopus cells is 

particularly intriguing because, like IC neurons, octopus cells display a diversity of chirp 

response profiles and can be selective to either upward or downward chirps (Lu et al., 

2022). Note that Lu et al. (2022) suggested that the diverse chirp-direction selectivity in 

octopus cells could be explained by sequence detection, with response magnitude 

determined by a sequence of inputs with both frequency-dependent delays and varied 

amplitudes, enabled by the relatively long hyperpolarization of low-threshold potassium 

channels. Another possibility is that chirp-direction selectivity may originate in stellate 

neurons of the cochlear nucleus, which have been noted to display strong-upward 

SCHR selectivity, at least for higher CFs (Recio and Rhode, 2000; Recio, 2001). 

However, because IC neurons can be selective for either upward or downward chirps 

(Fig. 2.10), cochlear nucleus stellates cannot be the only source of chirp sensitivity. 

Finally, another possibility is that chirp-direction selectivity may arise at the level of the 

IC, from an inhibitory interneuron with inputs extending across iso-frequency laminae, 

such as IC stellate neurons (Oliver, 1984). The literature suggests that such neurons 

may also have low-threshold potassium channels (Sivaramakrishnan and Oliver, 2001) 
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and could therefore be selective to a sequence of frequency inputs in a manner similar 

to that proposed for octopus cells. 

 The aperiodic-chirp stimulus was composed of discrete, single-chirps, whereas 

the SCHR stimulus was a longer, sustained harmonic tone. It is possible that the 

presence of silent gaps might partially explain differences in responses to the two 

stimuli. In the GLM analysis, the combined GLM with both periodicity and velocity terms 

sometimes could not explain a high percentage of the variance (Fig. 2.9), suggesting 

that additional factors shaped SCHR response rates. Long-term rate modulation in 

response to a sustained stimulus may be one of these factors. This long-term effect may 

be attributable to the auditory efferent system, and cannot be captured in brief aperiodic-

chirp responses. Similar long-term changes in rate have been reported in response to 

other complex sounds, representing a possible direction for future research (Farhadi et 

al., 2021). Furthermore, one could imagine a future study designing an aperiodic-chirp 

stimulus containing no silent gaps. 

 SCHR-chirp sensitivity in the IC suggests a mechanism that may influence 

midbrain-level encoding of speech. When speech sounds, or any animal vocalizations, 

are produced, resonances within the vocal tract act as second-order filters, introducing 

phase shifts between components of harmonic sounds (Klatt, 1980). In the same way 

that SCHR chirps are produced by the relative phases of harmonic components, 

vocalizations contain chirp-like features to which IC neurons may be similarly sensitive. 

IC neurons in this study were sensitive to SCHR chirps and directions over a frequency 

range relevant to human speech. Chirps extended over the frequency range of formants 

(200 – 3000 Hz for F1 and F2), and SCHR F0s were within the range of F0s in human 

speech (about 100 to 400 Hz) (Ladefoged and Johnson, 2014). Therefore, IC sensitivity 
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to chirp velocity may influence midbrain coding of speech, music, and other complex 

harmonic sounds. Also, responses to these sounds may be affected by the interaction of 

periodicity tuning and chirp-velocity sensitivity observed in this study. 
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Chapter 3: A Computational Model of Auditory Chirp-Velocity 

Sensitivity and Amplitude-Modulation Tuning in Inferior 

Colliculus Neurons 

 This chapter is published in the Journal of Computational Neuroscience. 

3.1 Abstract 

 We demonstrate a model of chirp-velocity sensitivity in the inferior colliculus (IC) 

that retains the tuning to amplitude modulation (AM) that was established in earlier 

models. The mechanism of velocity sensitivity is sequence detection by octopus cells of 

the posteroventral cochlear nucleus, which have been proposed in physiological studies 

to respond preferentially to the order of arrival of cross-frequency inputs of different 

amplitudes. Model architecture is based on coincidence detection of a combination of 

excitatory and inhibitory inputs. Chirp-sensitivity of the IC output is largely controlled by 

the strength and timing of the chirp-sensitive octopus-cell inhibitory input. AM tuning is 

controlled by inhibition and excitation that are tuned to the same frequency. We present 

several example neurons that demonstrate the feasibility of the model in simulating 

realistic chirp-sensitivity and AM tuning for a wide range of characteristic frequencies. 

Additionally, we explore the systematic impact of varying parameters on model 

responses. The proposed model can be used to assess the contribution of IC chirp-

velocity sensitivity to responses to complex sounds, such as speech. 

3.2 Introduction 

Natural sound stimuli, such as speech and music, are rich with spectral and temporal 

features to which auditory neurons are sensitive. The inferior colliculus (IC) has strong 
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rate tuning for complex sound features, such as amplitude modulations (AM). Recently, 

physiological studies have revealed that IC neurons have diverse sensitivity to the 

velocity of fast frequency sweeps, known as chirps, in both periodic (Steenken et al., 

2022; Henry et al., 2023) and aperiodic (Mitchell et al., 2023) stimuli. The velocity of 

these chirps is much greater than that of more commonly considered sounds, such as 

formant transitions (Liberman and Mattingly, 1989). The majority of IC neurons are 

sensitive for chirp velocity, regardless of characteristic frequency (CF) or type of 

periodicity tuning (Mitchell et al., 2023). Computational models of the IC currently do not 

include chirp-velocity sensitivity. Velocity sensitivity arising in octopus cells of the 

cochlear nucleus (CN) (Lu et al., 2022), which inhibit the IC via the ventral nucleus of the 

lateral lemniscus (VNLL) (Adams, 1997; Vater et al., 1997), could potentially give rise to 

velocity sensitivity in the IC. Here, a computational model was used to test the 

hypothesis that a midbrain model with an inhibitory input from a velocity-sensitive 

octopus-cell can model the velocity sensitivity observed in IC neurons in addition to AM 

tuning. 

 Octopus cells are uniquely found in the posteroventral cochlear nucleus (PVCN) 

(Golding et al., 1999). These cells are excellent coincidence detectors with fine temporal 

resolution (Golding et al., 1995), entraining to individual periodic stimulus cycles up to 

800 Hz while responding only to the onset of pure tones (Godfrey et al., 1975; Rhode 

and Smith, 1986). Additionally, octopus cells are distinguished by their wide dendritic 

fields, which extend across a range of auditory-nerve (AN) input frequencies (Osen, 

1969). Frequency-dependent dendritic delays have been suggested to counteract 

latencies arising from the cochlear traveling wave and to thus improve coincidence 

detection in response to transient stimuli (Spencer et al., 2012). Sensitivity to the timing 
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of cross-frequency inputs with different amplitudes may also give rise to diverse 

sensitivity to chirp velocity (Lu et al., 2022), which is similar to that observed in IC 

neurons. Octopus cells have a broad range of CFs, as low as 0.2 kHz (Liberman, 1993). 

Finally, octopus cells are known to project to the contralateral VNLL, which in turn 

provides an inhibitory input to the IC (Adams, 1997; Vater et al., 1997). This fact, 

together with the broad range of responses of octopus cells to chirp velocities, makes 

them a potential source of chirp sensitivity in the IC.  

Lu et al. (2022) posited that octopus cells function as sequence detectors, 

responding preferentially to dendritic inputs with different amplitudes that arrive in a 

certain temporal sequence. This mechanism depends on low-voltage-activated 

potassium (KL) channels, which are abundant in octopus cells (Bal and Oertel, 2001). 

Due to the slow recovery dynamics of the KL channels, dendritic inputs evoking both 

subthreshold and suprathreshold excitatory post-synaptic potentials (EPSPs) are 

followed by relatively long periods of hyperpolarization, preventing subsequent inputs 

from triggering action potentials. A suprathreshold input that normally evokes an action 

potential on its own will not do so when preceded by a subthreshold input. Therefore, a 

frequency sweep that triggers the suprathreshold EPSP before the subthreshold one will 

result in an action potential, whereas one that triggers the subthreshold EPSP before the 

suprathreshold one will not. This dependence upon the temporal sequence of inputs with 

different amplitudes, which are presumed to be tuned to different frequencies, was 

proposed to explain selectivity of octopus cells for chirp direction (Lu et al. 2022). 

The modeling strategy used in this paper is rooted in work by Siebert (1965), who 

introduced a quantitative strategy to predict psychophysical performance as a function of 

stimulus parameters, using an analytical model for auditory-nerve responses. This 
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approach used statistical decision theory to define the limits of auditory discrimination 

based on a statistical description of neural responses. An important assumption for this 

approach is to treat neural responses as nonhomogeneous Poisson processes (NHPPs) 

(Rieke et al., 1999). Siebert’s method has been employed for discrimination of tone 

frequency, level, and binaural cues, such as interaural time and level differences 

(Siebert, 1970; Colburn, 1973; Heinz et al., 2001a,b). This strategy was further 

developed by Krips and Furst (2009a,b), who demonstrated that Siebert’s method can 

be extended into the central nervous system. Krips and Furst’s (2009b) model cells are 

coincidence detectors (CDs) that receive multiple inputs and respond depending upon 

the relative timing of excitatory and/or inhibitory inputs. This general CD-based strategy 

is promising for modeling both the octopus cell’s sequence-detection mechanism and, 

subsequently, the chirp sensitivity of IC neurons. 

Here, we propose a model of IC chirp-sensitivity based on sequence detection of 

inhibitory octopus cells. First, we outline the model architecture within the Krips and 

Furst framework, describing the octopus-cell stage and then the IC stage. Then, we 

demonstrate the feasibility of the model in simulating IC neurons with physiologically 

plausible chirp sensitivity as well as AM tuning. Finally, we describe the parameters of 

the model and explore how parameter choice affected the sensitivity of the model cell. 

This work is a step towards addressing a gap in current computational models, which do 

not simulate sensitivity to chirps, despite its prevalence among IC neurons—over 90% 

are sensitive to chirp direction (Mitchell et al., 2023). A goal of this work is to simulate a 

diverse set of chirp-sensitive exemplar neurons using a single model architecture, rather 

than fitting the model to individual neuron responses.  
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In complex, harmonic sounds such as speech and music, phase differences 

between components give rise to chirps. Thus, inclusion of chirp sensitivity in 

computational models will improve predictions of responses to these realistic, 

perceptually important sounds. 

3.3 Methods 

 Many modeling approaches exist for both octopus cells and IC neurons, including 

Hodgkin-Huxley models (octopus cells: Spencer et al., 2012; Manis and Campagnola, 

2018; Lu et al., 2022; IC neurons: Cai et al., 1998), conductance-based models (octopus 

cells: Kalluri and Delgutte, 2003; Spencer et al., 2018; IC neurons: Hewitt and Meddis, 

1994), and simpler phenomenological models (octopus cells: Rebhan and Liebold, 2021; 

IC neurons: Nelson and Carney, 2004). The model proposed here is based on work that 

extends statistical decision theory (Siebert, 1965, 1970; Colburn, 1973; Heinz et al., 

2001a,b, 2002) to the central nervous system by generalizing auditory neurons as 

coincidence detectors that receive excitatory and/or inhibitory inputs (Krips and Furst, 

2009a,b). This approach was selected for its flexibility, relatively low number of 

parameters, and ability to assign parameters to physiological correlates. 

3.3.1. Model Architecture 

3.3.1.1. Model Inputs 

 Krips and Furst (2009a,b) show that the output of a coincidence detector (CD) is 

a non-homogeneous Poisson process (NHPP) if it receives independent inputs that are 

NHPPs. This property of Krips and Furst’s model CDs has the primary advantage of 

satisfying requirements for the use of statistical decision theory to estimate 
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psychophysical thresholds from model responses, namely that the statistics of discharge 

patterns are well-described and change as a function of the stimulus parameter of 

interest (Siebert, 1965; Heinz, 2001a,b). Additionally, Krips and Furst’s method allows 

for the design of multi-stage model architectures that extend into the central nervous 

system, with NHPP statistics preserved at each stage. 

 The CD unit described by Krips and Furst (2009a,b) receives any number of 

independent inputs, either excitatory or inhibitory, each described by an instantaneous 

rate function, λ(t). CD units can be defined by two basic interactions of inputs: 

excitatory-inhibitory (EI) and excitatory-excitatory (EE). A fundamental parameter of both 

EI and EE interactions is a temporal integration window, ∆. In an EI neuron, ∆ describes 

the time window over which inhibition can suppress the response of the model neuron. 

In an EE neuron, ∆ describes the time window within which excitation from multiple 

inputs facilitates the model response. To retain NHPP statistics in the output, ∆ must be 

less than the refractory periods of the inputs. 

The full model introduced here consisted of two distinct Krips-and-Furst CD 

models, an octopus cell and an IC cell (Fig. 3.1). Inputs to the octopus-cell stage were 

provided by a version of the Zilany et al. (2014) AN model that was modified to include 

gain control via the medial olivocochlear (MOC) efferent (Farhadi et al., 2023) and an 

improved approximation to the power-law synapse model (Guest and Carney, 2023). 

The efferent feedback in the AN model affected responses to sounds with modulated 

envelopes, including the aperiodic random chirp stimulus used here to characterize 

model neurons’ chirp-velocity sensitivity. Additionally, inclusion of the MOC efferent 

pathways imparted more physiologically accurate responses to amplitude-modulated 
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noise over a wide dynamic range. The AN model always simulated high-spontaneous-

rate fibers, which are the majority of AN fibers (Liberman, 1978). For simplicity, the 

excitatory input to the IC stage was also provided by a delayed AN response, 

representing direct inputs from the CN or those relayed through other brainstem nuclei. 

 

Figure 3.1 – Block Diagram of the model, showing excitatory and inhibitory inputs to both 
stages. AN input labels indicate whether they are CF or off-CF (OCF) with respect to the 
CF of the IC neuron. Rate functions are indicated by 𝜆𝜆. AN fibers provide CF and off-CF 
(OCF) excitatory inputs to the octopus cell (𝜆𝜆𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶  and 𝜆𝜆𝐴𝐴𝐴𝐴𝑂𝑂𝐶𝐶𝐶𝐶), delayed by 𝑑𝑑𝐶𝐶𝐶𝐶 and 𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶, 
respectively. The numbers of excitatory inputs are 𝑁𝑁𝐶𝐶𝐶𝐶 and 𝑁𝑁𝑂𝑂𝐶𝐶𝐶𝐶 . The excitatory inputs 
have an integration window ∆𝐸𝐸𝐸𝐸. The AN fibers also provide an inhibitory input 
representing hyperpolarization of the cell due to opening of potassium channels, with 
delay 𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝 and integration window ∆𝐻𝐻𝑝𝑝𝑝𝑝. Finally, output of the octopus cell below a 
threshold 𝜃𝜃 was set equal to zero. The output of the octopus cell, 𝜆𝜆𝑂𝑂𝑐𝑐𝑝𝑝 , provides 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝  
inhibitory inputs to the IC stage, with integration window ∆𝑂𝑂𝑐𝑐𝑝𝑝 . The IC stage also receives 
𝑀𝑀𝐼𝐼 on-CF inhibitory inputs (𝜆𝜆𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶) with delay (𝑑𝑑𝐼𝐼) and integration window ∆𝐼𝐼. Finally, the 
IC stage receives one CF excitatory input from 𝜆𝜆𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 , with delay (𝑑𝑑𝐸𝐸). 

 The frequencies of the AN fiber inputs were defined as CF and off-CF (OCF), 

where CF was the desired characteristic frequency of the model IC cell. Note that 

whether the OCF frequency was above or below CF determined the direction of chirp 

selectivity. The following sections describe how the two model stages were portrayed 

Octopus Cell
( )

IC

Exc.
Inh.

Key

( )
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using the Krips and Furst (2009a,b) framework, with details provided for how parameter 

selection related to physiology. 

3.3.1.2. Octopus-Cell Stage 

The first stage of the model represented one aspect of octopus-cell responses, velocity 

sensitivity, based on the sequence detection theory posited by Lu et al. (2022). 

Sequence detection relies on the KL channels of octopus cells to provide 

hyperpolarization following either subthreshold or suprathreshold EPSPs. Excitatory 

inputs that arrive during KL hyperpolarizations did not produce action potentials. To 

mimic the time-course of hyperpolarization caused by KL channels, we used delayed 

inhibitory inputs to the octopus cell to represent KL hyperpolarizations. Note that these 

inputs do not represent the actual inhibitory inputs (from unknown sources) that have 

been described on octopus cell dendrites (Kreeger et al., 2024). 

To implement sequence detection in its simplest configuration, two excitatory AN inputs 

were used, one subthreshold and one suprathreshold. The CF of the suprathreshold 

input matched the CF of the model IC cell. The frequency tuning of the off-CF 

subthreshold input (i.e., whether it was below or above CF) determined the direction of 

the chirp-velocity selectivity, as described below. The inputs had rate functions λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶  and 

λ𝐴𝐴𝐴𝐴𝑂𝑂𝐶𝐶𝐶𝐶 , respectively. Additionally, the two inhibitory inputs representing KL 

hyperpolarization were delayed copies of the excitatory AN inputs. Note that since 

hyperpolarization always occurs after excitation, these inputs are not independent from 

one another (this issue will be further discussed below). 

Direction-selectivity of the octopus cell was determined as follows: a chirp eliciting the 

suprathreshold CF input before the subthreshold OCF input resulted in an action 
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potential, because the suprathreshold excitation arrived before KL hyperpolarization 

could suppress the response. In contrast, a chirp of the opposite direction, eliciting the 

subthreshold OCF input before the suprathreshold CF input, resulted in suppression of 

the suprathreshold input by the KL hyperpolarization that followed the earlier 

subthreshold input, resulting in no response. In general, the cell was most responsive to 

stimuli that excited the suprathreshold (CF) input first. Thus, if the OCF input was tuned 

higher than IC CF, the octopus cell was selective for upward chirps. Alternatively, if the 

OCF input was tuned lower than IC CF, the octopus cell was selective for downward 

chirps (Lu et al., 2022). Figure 3.2 illustrates the sequence detection mechanism for two 

pairs of inputs with different CF ranges. 
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Figure 3.2 – Illustration of sequence-detection mechanism using example octopus-cell 
chirp responses. A) Upward chirp waveform (1.59 kHz/ms, 50 Hz to 16 kHz) B) 
Downward chirp waveform (-1.59 kHz/ms, 16 kHz to 50 Hz) C) Neurogram of AN model 
responses to example upward chirp. Gray shading (color bar) indicates rate function 
magnitude (lambda). Solid horizontal lines cut through the responses of individual fibers 
of different CFs (pink = 2 kHz, purple = 3.3 kHz, orange = 8 kHz, green = 10.6 kHz), 
corresponding to AN inputs to the example octopus-cell responses in E-L. Pink marker 
at 3 ms and orange marker at 7 ms mark the beginning of the plotted example 
responses in E-H. Note that the sound level used in this figure was 35 dB SPL (65 dB 
SPL used elsewhere) to simplify the shape of the neurogram by minimizing spread-of-
excitation effects.  D) Neurogram of AN model responses to example downward chirp. 
Pink marker at 17 ms and orange marker at 5.5 ms mark the beginning of the plotted 
example responses in I-L. E-H) Responses to an upward chirp of several example 
octopus cells (black), receiving suprathreshold (thick trace) and subthreshold (thin trace) 
inputs. Hyperpolarization traces are plotted as dotted lines. Labeled arrows depict delays 
applied to inputs with matching colors. I-L) Responses to a downward chirp of several 
example octopus cells, in the same format as E-H. Examples E and I receive a 2-kHz 
suprathreshold input (pink) and 3.3-kHz subthreshold input (purple), resulting in an 
octopus-cell model with upward chirp selectivity. Examples F and J receive an 8-kHz 
suprathreshold input (orange) and 10.6-kHz subthreshold input (green), resulting in 
upward chirp selectivity. Examples G and K receive a 3.3-kHz suprathreshold input 
(purple) and 2-kHz subthreshold input (pink), resulting in downward chirp selectivity. 
Examples H and L receive a 10.6-kHz suprathreshold input (green) and 8-kHz 
subthreshold input (orange), resulting in downward chirp selectivity. 
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 To better temporally align AN responses with different CFs, which differ in 

latency, a delay parameter was imposed on both excitatory inputs, denoted as 𝑑𝑑𝐶𝐶𝐶𝐶 and 

𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶. Depending on the combination of input CFs, the delay was either applied only to 

the CF input (𝑑𝑑𝐶𝐶𝐶𝐶 > 0 and 𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 = 0) or only to the OCF input (𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 > 0 and 𝑑𝑑𝐶𝐶𝐶𝐶 = 0). A 

delay value that ensured the desired chirp-direction sensitivity across all chirp velocities 

was determined through parameter optimization (described in detail below). The function 

of the delays was to ensure two things: one, in response to chirps of the selected-for 

direction, suprathreshold CF input arrived sufficiently before the subthreshold OCF input 

to avoid suppression by OCF hyperpolarization, and two, in response to chirps of the 

opposite direction, suprathreshold CF input arrived sufficiently after the subthreshold 

OCF input for maximal suppressed by OCF hyperpolarization. In Figure 3.2E-L, arrows 

above the traces indicate delays that maximized desired direction-selectivity. 

The sequence-detection mechanism was implemented using the framework in 

Krips & Furst (2009a,b), as follows: Consider only the excitatory inputs of the octopus 

cell (λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶  and λ𝐴𝐴𝐴𝐴𝑂𝑂𝐶𝐶𝐶𝐶). Let 𝑁𝑁 =  𝑁𝑁𝐶𝐶𝐶𝐶 +  𝑁𝑁𝑂𝑂𝐶𝐶𝐶𝐶  , be the number of excitatory AN inputs to 

the octopus cell, where 𝑁𝑁𝐶𝐶𝐶𝐶 represents the number of identical copies of λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 , and 𝑁𝑁𝑂𝑂𝐶𝐶𝐶𝐶  

represents the number of identical copies of λ𝐴𝐴𝐴𝐴𝑂𝑂𝐶𝐶𝐶𝐶 . The cell responded when at least 𝐿𝐿 

inputs are active during an interval ∆. For the purposes of this sequence-detector model, 

𝑁𝑁𝐶𝐶𝐶𝐶 = 𝐿𝐿 and 𝑁𝑁𝑂𝑂𝐶𝐶𝐶𝐶 = 1, where 𝐿𝐿 > 1 and ∆ is ∆𝐸𝐸𝐸𝐸 (Fig. 3.1); therefore, the model cell 

responded only if activity occurred on at least 𝑁𝑁 − 1 inputs during an interval ∆𝐸𝐸𝐸𝐸.   

To ensure the sequence-detection mechanism, the suprathreshold input, λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 , 

must trigger an action potential in isolation, while λ𝑂𝑂𝑐𝑐𝑝𝑝𝑂𝑂𝐶𝐶𝐶𝐶, the subthreshold input, must 

not. Thus, the octopus cell can be thought of as a multiple-input EE cell that responds 
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either when receiving exactly 𝑁𝑁 active inputs (all inputs, CF and OCF) or when receiving 

exactly 𝑁𝑁 − 1 active inputs (all CF inputs, but not the OCF input). Let us consider the first 

case, when the cell receives 𝐿𝐿 = 𝑁𝑁 active inputs. The set of all inputs is {λ1, … , λ𝐴𝐴}. The 

instantaneous rate is described by (Eqn. 4.21 in Krips and Furst, 2009b): 

λ𝐸𝐸𝐸𝐸𝐿𝐿 (𝑝𝑝) =  �λ𝑙𝑙(𝑃𝑃)
𝐿𝐿

𝑙𝑙=1

� � λ𝑗𝑗(𝑃𝑃′)𝑑𝑑𝑃𝑃′
𝑝𝑝

𝑝𝑝−∆

𝐿𝐿

𝑗𝑗=1,𝑗𝑗≠𝑙𝑙

   . 

The cell responds at time 𝑃𝑃 only when activity is observed on all 𝐿𝐿 = 𝑁𝑁 inputs within the 

time interval (𝑃𝑃 − ∆, 𝑃𝑃). Note that here, ∆ = ∆𝐸𝐸𝐸𝐸 . 

Now consider the second case, when the cell receives exactly 𝑁𝑁 − 1 active 

inputs. Let 𝑣𝑣 be the exact number of active inputs. If 𝐿𝐿 ≤ 𝑣𝑣 ≤ 𝑁𝑁, there are �𝐴𝐴𝑙𝑙 � (𝑁𝑁-choose-

𝑣𝑣) sets of active inputs possible. Given 1 ≤ 𝑐𝑐 ≤ �𝐴𝐴𝑙𝑙 �, the 𝑐𝑐th set of active inputs is denoted 

as Ψ𝑙𝑙𝑐𝑐 = {λ1
(𝑐𝑐), … , λ𝑙𝑙

(𝑐𝑐)}. The complementary set of 𝑁𝑁 − 𝑣𝑣 inactive inputs is denoted as 

Ω𝑙𝑙𝑐𝑐 = {λ𝑙𝑙+1
(𝑐𝑐), … , λ𝐴𝐴

(𝑐𝑐)}. Therefore, the instantaneous rate of a cell that responds when 

exactly 𝑣𝑣 inputs are active, and 𝑁𝑁 − 𝑣𝑣  inputs are not active, is described by (Eqn. 4.23 in 

Krips and Furst, 2009b): 

λ𝐸𝐸𝐸𝐸=𝑙𝑙𝑁𝑁 (𝛹𝛹) = �λ𝐸𝐸𝐸𝐸𝑙𝑙 �𝛹𝛹𝑙𝑙𝑐𝑐�λ𝐼𝐼�𝛺𝛺𝑙𝑙𝑐𝑐�

�𝑁𝑁𝑙𝑙 �

𝑐𝑐=1

  , 

where λ𝐸𝐸𝐸𝐸𝑙𝑙 (𝛹𝛹𝑙𝑙𝑐𝑐) is the instantaneous rate of the EE cell receiving the set of active inputs 

𝛹𝛹𝑙𝑙𝑐𝑐, given by Eqn. 4.21 in Krips and Furst (2009b). Meanwhile, λ𝐼𝐼(𝛺𝛺𝑙𝑙𝑐𝑐) is the 

instantaneous rate of the set of inactive inputs 𝛺𝛺𝑙𝑙𝑐𝑐, described by (Eqn. 4.24 in Krips and 

Furst, 2009b): 
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λ𝐼𝐼�𝛺𝛺𝑙𝑙𝑐𝑐� =  � �1 −� λ𝑗𝑗(𝑐𝑐)(𝑃𝑃′)𝑑𝑑𝑃𝑃′
𝑝𝑝

𝑝𝑝−∆
�

𝐴𝐴

𝑗𝑗=𝑙𝑙+1

. 

. 

The octopus cell responds if 𝑣𝑣 = 𝑁𝑁 or 𝑣𝑣 = 𝑁𝑁 − 1. The instantaneous rate of each 

of these two cases is found by substituting 𝑣𝑣 into Eqn. 4.23 in Krips and Furst (2009b). 

Summing these two functions gives the final instantaneous rate of the multiple-input EE 

cell, λ𝐸𝐸𝐸𝐸𝐿𝐿𝑁𝑁(𝛹𝛹). 

Next, the effect of the KL hyperpolarization inputs can be considered. These 

inhibitory inputs are copies of the excitatory inputs, λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶  and λ𝐴𝐴𝐴𝐴𝑂𝑂𝐶𝐶𝐶𝐶 , delayed by 𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝 

seconds. Letting Ψ𝐴𝐴𝐴𝐴 be the set of all AN inputs (where again, 𝑁𝑁 = 𝑁𝑁𝐶𝐶𝐶𝐶 +𝑁𝑁𝑂𝑂𝐶𝐶𝐶𝐶), the full 

equation for the instantaneous rate of the octopus cell stage is described by (Eqn. 1): 

λ𝑂𝑂𝑐𝑐𝑝𝑝(𝑃𝑃) = λ𝐸𝐸𝐸𝐸𝐿𝐿𝑁𝑁(Ψ𝐴𝐴𝑁𝑁) ∙ �1 −� λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶(𝑃𝑃 ′)𝑑𝑑𝑃𝑃′
𝑝𝑝

𝑝𝑝−∆𝐻𝐻𝑝𝑝𝑝𝑝
� ∙ �1 − � λ𝐴𝐴𝐴𝐴𝑂𝑂𝐶𝐶𝐶𝐶(𝑃𝑃 ′)𝑑𝑑𝑃𝑃′

𝑝𝑝

𝑝𝑝−∆𝐻𝐻𝑝𝑝𝑝𝑝
� .        (𝐸𝐸𝐸𝐸𝐶𝐶 1) 

 Finally, to ensure that the octopus cell has an “ideal onset” quality (Godfrey et al., 

1975; Rhode and Smith, 1986; Oertel et al., 2000), a threshold 𝜃𝜃 was applied to λ𝑂𝑂𝑐𝑐𝑝𝑝, 

that is, samples of λ𝑂𝑂𝑐𝑐𝑝𝑝(𝑃𝑃) below 𝜃𝜃 were set to zero. The value of 𝜃𝜃 was chosen by 

observing rate functions of the octopus cell stage in response to click trains. The value 𝜃𝜃 

= 50 spk/s eliminated activity between click cycles. 

3.3.1.3. IC Stage 

 The second stage of the model represented a neuron in the IC that received 

excitatory input from the brainstem and inhibition from the octopus-cell via the VNLL, 

which gave it chirp-direction sensitivity. The IC model neuron also received a delayed 
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inhibitory input with the same CF as the excitatory input, as in the same-frequency 

inhibition and excitation (SFIE) model for AM tuning (Nelson and Carney, 2004). 

 The AM tuning of a neuron is characterized by a modulation transfer function 

(MTF), the average response rate versus modulation frequency. The SFIE model 

produces neurons with band-enhanced (BE) MTFs, which are characterized by 

increased excitation, with respect to unmodulated responses, over a band of modulation 

frequencies (Kim et al., 2020). For the IC stage here, the brainstem was not explicitly 

modeled, for simplicity, and the excitatory brainstem input was represented by a version 

of λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶  that was delayed by 𝑑𝑑𝐸𝐸. The corresponding inhibition was also represented by a 

copy of λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶  that was delayed by 𝑑𝑑𝐼𝐼. This inhibition had the associated parameters ∆𝐼𝐼, 

the integration window, and 𝑀𝑀𝐼𝐼, describing the number of times the inhibitory input was 

duplicated. To ensure the octopus-cell inhibition arrived before the excitatory input, the 

value of 𝑑𝑑𝐸𝐸 was greater than 0. Additionally, to ensure the same-frequency inhibition 

arrived after the excitatory input, the inhibitory delay, 𝑑𝑑𝐼𝐼, was greater than the excitatory 

delay, 𝑑𝑑𝐸𝐸. 

 The inhibition from the octopus-cell stage, λ𝑂𝑂𝑐𝑐𝑝𝑝, had its own set of parameters: 

𝑑𝑑𝑂𝑂𝑐𝑐𝑝𝑝, ∆𝑂𝑂𝑐𝑐𝑝𝑝 , and 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝, for the delay, integration window, and number of inhibitory inputs, 

respectively. The instantaneous rate at the IC stage output was defined as 

λ𝐼𝐼𝐶𝐶(𝑃𝑃) =  λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶(𝑃𝑃) ∙ �1− � λ𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶(𝑃𝑃 ′)𝑑𝑑𝑃𝑃′
𝑝𝑝

𝑝𝑝−∆𝐼𝐼
�
𝑀𝑀𝐼𝐼

∙ �1− � λ𝑂𝑂𝑐𝑐𝑝𝑝(𝑃𝑃 ′)𝑑𝑑𝑃𝑃′
𝑝𝑝

𝑝𝑝−∆𝑂𝑂𝑐𝑐𝑝𝑝
�
𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝

  .    (𝐸𝐸𝐸𝐸𝐶𝐶 2) 

Additionally, the final output λ𝐼𝐼𝐶𝐶 was half-wave rectified to prevent negative rates. As 

illustrated below, the model IC cell was sensitive to chirp direction and velocity and had 

BE AM tuning. 
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3.3.2. Stimuli 

 To validate the IC-model response characteristics, the following set of stimuli, 

similar to those used in the experimental study of Mitchell et al. (2023), were presented 

to model cells. Responses to pure tones at different levels and frequencies were used to 

generate response maps (RMs) and assess frequency tuning. Sinusoidally amplitude-

modulated (SAM) noise was used to generate modulation transfer functions (MTFs), 

used to evaluate tuning to modulation frequency. Aperiodic chirp stimuli were used to 

generate rate-velocity functions (RVFs), which characterize sensitivity to direction and 

velocity of chirps. Additionally, click-train stimuli were used as an alternate method of 

generating MTFs, for the purpose of comparing octopus-cell model responses to 

physiological responses (Godfrey et al., 1975). Unless stated otherwise, all model 

response rates were determined by calculating the integral of the model rate function 

over the stimulus duration. Rate functions were constructed using the mean of 

responses to five stimulus repetitions. The input signal for each repetition was the mean 

of 10 statistically independent high-spontaneous-rate (HSR) AN-model responses for 

each frequency channel. The number of AN fibers per channel was chosen to align with 

the approximate number of HSR AN fibers that innervate each inner hair cell in the 

cochlea (Keithley and Schreiber, 1987). 

 RMs were produced using a series of 200-ms-duration tones with frequencies 

ranging from 250 Hz – 10 kHz, at 10, 30, 50, and 70 dB SPL. Tones had 10-ms raised-

cosine ramps.  

 Responses to SAM noise were used to generate rate MTFs. Noise was 100% 

modulated over a range of modulation frequencies from 2 – 500 Hz. The noiseband 
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spanned 100 Hz – 10 kHz, had a spectrum level of 30 dB SPL (overall level of 70 dB 

SPL), and duration of 1000 s (including 50-ms raised-cosine ramps). MTFs were 

classified based on the rates in response to modulated relative to unmodulated stimuli. 

Here, the model was designed to produce BE MTF shapes.  

 An aperiodic chirp stimulus, introduced in Mitchell et al. (2023), was designed to 

characterize neural sensitivity to direction and velocity of fast frequency chirps using 

RVFs, defined as average rate versus the velocity of a linear frequency sweep. This 

stimulus is derived from the Schroeder-phase harmonic complex (Schroeder, 1970). To 

construct the aperiodic chirp stimulus, fundamental periods were extracted from a set of 

Schroeder-phase stimuli, with each period being equivalent to a linear frequency chirp. 

The set of chirp velocities used was identical to those in Mitchell et al. (2023): ±0.40, 

±0.80, ±1.59, ±3.16, ±6.24, and ±9.24 kHz/ms. Note that these velocities are matched to 

those of Schroeder-phase harmonic complexes with fundamental frequencies of 25, 50, 

100, 200, 400, and 600 Hz, respectively, and with the highest harmonic frequency at 16 

kHz. A random sequence of chirps was generated, with each combination of direction 

and velocity presented a total of 42 times. To avoid periodicity, random spacing (40 – 60 

ms) was introduced between chirp offsets and onsets. Raised-cosine ramps with 

durations equal to 10% of chirp duration were applied to each chirp. The sound level of 

each chirp was set to 65 dB SPL − 10 × log10(𝑇𝑇/𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟), where 𝑇𝑇 is the duration of the 

chirp, and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 2.5 ms (the duration of the ±6.24 kHz/ms chirp). This scaling ensured 

that energy was normalized among chirps of different durations. To construct the RVF, 

response rate was calculated by summing spikes over a 15-ms window centered at the 

peak of the neural response. 
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 For click MTFs, click trains were generated with methods adapted from Godfrey 

et al. (1975). Rarefaction clicks, 0.1 ms in duration, were generated with rates from 2 – 

500 Hz. Click level was approximately 130 dB peSPL, to match the stimuli described in 

Godfrey et al. (1975). Click MTFs were generated in the same manner as noise MTFs, 

with rate expressed as a function of click rate. To illustrate entrainment, a special rate 

calculation was performed to generate click MTFs. Instead of integrating the rate 

function over the response duration, the number of threshold crossings in the rate 

function was counted. To ensure each response was only counted once, a refractory 

period of 1 ms was included. For this calculation only, a threshold of 110 spikes/s was 

manually selected based on examination of the click-evoked rate functions (this 

threshold is distinct from the threshold 𝜃𝜃 applied to octopus cell output, described 

below). 

3.3.3. Model Parameter Selection 

 The chirp-velocity sensitivity of the model IC cell was dependent upon the 

sensitivity of the octopus-cell inhibitory input. Therefore, the selection of octopus-cell 

parameters was important for generating model IC cells with physiologically appropriate 

chirp responses. Sensitivity towards chirp velocity and direction can be characterized by 

RVFs. While octopus-cells have heterogeneous chirp sensitivity (Lu et al., 2022), and 

thus would have a variety of RVF shapes, for the purpose of this study it was useful to 

consider two basic types, one selective for upward chirps and one for downward chirps. 

Octopus-cell parameters were determined using the MATLAB parameter-

optimization tool fmincon (2022a, MathWorks). This tool is designed to determine the 

parameters that minimize the output of a loss function. Here, the loss function was 1 −
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𝑃𝑃𝑐𝑐𝑟𝑟𝑟𝑟(𝑅𝑅𝑅𝑅𝑅𝑅𝑢𝑢𝑐𝑐𝑐𝑐 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑟𝑟𝑢𝑢), where 𝑅𝑅𝑅𝑅𝑅𝑅𝑢𝑢𝑐𝑐𝑐𝑐 was the RVF of the model octopus cell, 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑟𝑟𝑢𝑢 

was the template RVF, and 𝑃𝑃𝑐𝑐𝑟𝑟𝑟𝑟 was the linear correlation operation (note that this loss 

function was identical to maximizing the correlation between model and template RVFs). 

Two template RVFs were used: the upward-selective template had rates of one for 

positive velocities and rates of zero for negative velocities; the downward-selective 

template had rates of one for negative velocities and zero for positive velocities. These 

two simple RVF shapes were chosen to impart the most basic direction selectivity upon 

the octopus-cell RVFs. 

 Octopus-cell parameters yielding upward-selective and downward-selective 

RVFs were found for CFs of 1, 4, and 8 kHz (representing low, medium, and high IC 

CFs). To ease optimization, the octopus-cell parameter space was simplified to two free 

parameters: OCF, the frequency of the off-CF input, and a single delay that was applied 

to the higher-CF of the two AN inputs, either 𝑑𝑑𝐶𝐶𝐶𝐶 or 𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶. Initial parameter values were 

randomly selected within each parameter’s lower and upper bounds (Table 3.1). Note 

that the bounds for OCF depended on the desired direction-selectivity of the octopus 

cell. From here, fmincon optimized the free parameters that minimized the objective 

function and resulted in an RVF that most resembled the template RVF. Note that the 

optimal delay parameter yields the highest direction bias for the most velocity pairs, but 

this is not necessarily optimal for all velocities individually. Thus, the magnitude of 

direction bias in the RVF varies for different velocities. 
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Table 3.1 – Octopus-cell stage parameters and their respective values or ranges. 

Parameter Name Value (or range) 
𝑁𝑁𝐶𝐶𝐶𝐶 3 or 4 
𝑁𝑁𝑂𝑂𝐶𝐶𝐶𝐶  1 
OCF CF/3–3CF Hz 
𝑑𝑑𝐶𝐶𝐶𝐶 OR 𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 0–2 ms 
∆𝐸𝐸𝐸𝐸 1 ms 
∆𝐻𝐻𝑝𝑝𝑝𝑝 2 ms 
𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝 0.4 ms 
𝜃𝜃 50 spikes/s 

  

For the remaining octopus-cell parameters, 𝑁𝑁𝐶𝐶𝐶𝐶, ∆𝐸𝐸𝐸𝐸, ∆𝐻𝐻𝑝𝑝𝑝𝑝, and 𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝, a range of 

values was explored to optimize the chirp-sensitivity of octopus-cell RVFs. This 

exploration is summarized in Results (Figs. 3.7-10), and the default values for each 

parameter are given in Table 3.1. 

 Finally, IC-stage parameters 𝑑𝑑𝑂𝑂𝑐𝑐𝑝𝑝, 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝, 𝑑𝑑𝐼𝐼, and 𝑀𝑀𝐼𝐼, were manually selected to 

match the desired response properties, i.e., an IC cell receiving upward-selective 

octopus-cell inhibition had parameters to maximize downward-selectivity in its RVF. 

Parameters of all IC cells were selected to yield BE MTFs. IC velocity-sensitivity was 

primarily affected by octopus-cell inhibition parameters (𝑑𝑑𝑂𝑂𝑐𝑐𝑝𝑝, 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝), and periodicity 

tuning was primarily affected by SFIE inhibition parameters (𝑑𝑑𝐼𝐼, 𝑀𝑀𝐼𝐼). The impact of 

varying these IC-stage parameters is summarized in Figs. 3.11-14. For simplicity, ∆𝑂𝑂𝑐𝑐𝑝𝑝  

and ∆𝐼𝐼 were both set equal to 1 ms. 

3.4 Results 

3.4.1. Octopus-Cell Stage Responses 

Tones and click stimuli were used to confirm that response properties of the 

octopus-cell stage were consistent with physiological recordings (Godfrey et al., 1975; 



80 
 

Rhode and Smith, 1986). The responses of an upward-sensitive octopus cell (λ𝑂𝑂𝑐𝑐𝑝𝑝) with 

CF = 4 kHz illustrate a rate function with a strong onset response to a pure tone at CF, 

followed by rates near zero (Fig. 3.3A). 

 

Figure 3.3 – Responses of an example model octopus cell to tone and click stimuli. A) 
Rate function (𝜆𝜆𝑂𝑂𝑐𝑐𝑝𝑝) in response to a pure tone at CF, B) Pure-tone response map, 
illustrating CF at 4 kHz, C) Rate function in response to a click train (200 Hz, peak level 
130.6 dB peSPL), and D) Click MTF for 2–900 Hz. For this panel only, to illustrate 
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entrainment, threshold-crossings of the rate-function (C) were counted to approximate 
action potentials (threshold = 110 spk/s). 

The pure-tone RM (Fig. 3.3B) reflects the CF of 4 kHz, with a broader frequency-

response at 50 and 70 dB SPL. In response to a click train, a peak in the rate function 

was observed for every click; the amplitude of the rate function increased at the 

beginning of the response but leveled off with time (Fig. 3.3C). With increasing click rate, 

the response rate entrained until 600 Hz, and stopped responding at 900 Hz (Fig. 3.3D). 

3.4.2. Example Neurons 

Example neurons with both upward and downward chirp-direction sensitivity 

were produced with low, medium, and high CFs. Parameter values for example neurons 

are provided in Table 3.2. Note that these parameters were manually selected to result 

in example model neurons with substantial chirp sensitivity and AM tuning that was 

representative of IC recordings (Mitchell et al., 2023). Optimal fitting of this large set of 

parameters to actual neural responses may be possible but is beyond the scope of this 

study. 

Table 3.2 – Parameter values for example neurons 

CF 
(kHz) 

IC 
direction  

OCF 
(kHz) 

𝑑𝑑𝐶𝐶𝐶𝐶 
(ms) 

𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 
(ms) 

𝑁𝑁𝐶𝐶𝐶𝐶  𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 𝑀𝑀𝐼𝐼 𝑑𝑑𝐸𝐸 
(ms) 

𝑑𝑑𝐼𝐼 
(ms) 

∆𝑂𝑂𝑐𝑐𝑝𝑝 
(ms) 

∆𝐼𝐼  
(ms) 

1 Down 2.21 0 0.45 4 12 8 1 3.5 1 1 
1 Up 0.90 1.00 0 4 12 16 1.4 3.4 1 1 
4 Down 5.33 0.30 0 3 6 16 0.5 3.0 1 1 
4 Up 2.24 1.20 0 3 6 8 1.5 4.0 1 1 
8 Down 10.69 0.40 0 3 3 8 1.2 3.7 1 1 
8 Up 5.51 0.90 0 3 12 8 1.5 4.5 1 1 

 

For model IC neurons with low CF (CF = 1 kHz) (Fig. 3.4), chirp-direction 

sensitivity was less prominent than for higher-CF neurons. Chirp-direction sensitivity is 

observed in the RVF plots by comparing the rates in response to positive and negative 
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chirp directions at each chirp speed. In the plots below, vertical dashed lines at ±1.59 

and ±6.24 kHz/ms have been included for ease of comparison. The downward-sensitive 

IC neuron received upward-sensitive octopus-cell inhibition (Fig. 3.4A). The model 

octopus cell was upward-sensitive across all velocities in the RVF, whereas the model 

IC cell was downward-sensitive for chirps below ±3.16 kHz/ms, and was not direction 

sensitive at higher speeds (Fig. 3.4B). The MTF of the IC stage was BE (Fig. 3.4C). 
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Figure 3.1 – Example low-CF (1 kHz) octopus-cell (A, D) and IC (B,C,E,F) model 
responses. A-C correspond to upward-sensitive octopus and downward-sensitive IC 
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models, D-E correspond to downward-sensitive octopus and upward-sensitive IC 
models. In RVFs, blue indicates response to upward velocities, red indicates response to 
downward velocities. Error bars indicate standard deviation of 5 model repetitions. 

 The upward-sensitive model IC neuron received downward-sensitive octopus-cell 

inhibition (Fig. 3.4D). The RVF of the octopus-cell inhibition was downward-sensitive, for 

velocities below ±6.24 kHz/ms; the RVF of the IC stage was similarly upward-sensitive 

for velocities below ±6.24 kHz/ms (Fig. 3.4E). The MTF of the IC stage was BE (Fig. 

3.4F). Notably, for both low-CF examples, 𝑁𝑁𝐶𝐶𝐶𝐶 was set to 4, resulting in stronger chirp-

sensitivity (𝑁𝑁𝐶𝐶𝐶𝐶 was set to 3 for model neurons with higher CFs, below). The error bars 

indicate the standard deviation of 5 model trials.  

 Chirp-sensitive medium-CF (CF = 4 kHz) model neurons (Fig. 3.5) had MTFs 

with more prominent peaks and RVFs with larger rate-differences between directions 

than the low-CF neurons (Fig. 3.4). The RVF of the upward-sensitive medium-CF 

octopus cell had large rate-differences for all velocity pairs (Fig. 3.5A). The rate-

differences in the downward-sensitive IC RVF are also large (Fig. 3.5B). The IC MTF 

(Fig. 3.5C) was BE, with a well-defined peak at about 100 Hz. In contrast to the upward-

sensitive octopus cell (Fig. 3.5A), the downward-sensitive medium-CF octopus-cell (Fig. 

3.5D) was upward-sensitive at low chirp speeds (<3.16 kHz/ms), but not at high speeds 

(>6.24 kHz/ms). Similarly, the IC RVF (Fig. 3.5E) is downward-sensitive for low chirp 

speeds, and upward-sensitive at high speeds. The IC MTF is BE, with a BMF of about 

100 Hz (Fig. 3.5 F). For both medium-CF model cells, direction-sensitivity was strongest 

for velocities below ±3.16 kHz/ms. 
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Figure 3.5 – Example medium-CF (4 kHz) octopus-cell (A, D) and IC (B,C,E,F) model 
responses. A-C correspond to upward-sensitive octopus and downward-sensitive IC 
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models, D-E correspond to downward-sensitive octopus and upward-sensitive IC 
models. In RVFs, blue indicates response to upward velocities, red indicates response to 
downward velocities. Error bars indicate standard deviation of 5 model repetitions. 

Chirp-sensitive high-CF (CF = 8 kHz) IC neurons (Fig. 3.6) had slightly smaller 

rate-differences between directions than CF = 4 kHz (Fig. 3.5). The RVF of the octopus-

cell (Fig. 3.6A) that inhibited the downward-sensitive IC neuron was upward-sensitive at 

all velocities, with response rate peaking at +0.80 kHz/ms. The corresponding IC RVF 

(Fig. 3.6B) is downward-sensitive at all velocities, but with smaller rate differences than 

the medium-CF example (Fig. 3.5B). The IC MTF is BE (Fig. 3.6D), with BMF around 40 

Hz. Finally, the downward-sensitive octopus cell has strong chirp-direction sensitivity for 

all velocities (Fig. 3.6D). The IC RVF (Fig. 3.6E) is upward-sensitive, except for ±0.80 

kHz/ms, for which it is slightly downward-sensitive. Also notable is the large rate-

difference for ±0.40 kHz/ms, despite the comparatively smaller rate difference in the 

octopus cell RVF (Fig. 3.6E). The IC MTF is BE (Fig. 3.6F), with a BMF of approximately 

40 Hz. 



87 
 

 

Figure 3.6 – Example high-CF (8 kHz) octopus-cell (A, D) and IC (B,C,E,F) model 
responses. A-C correspond to upward-sensitive octopus and downward-sensitive IC 
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models, D-E correspond to downward-sensitive octopus and upward-sensitive IC 
models. In RVFs, blue indicates response to upward velocities, red indicates response to 
downward velocities. Error bars indicate standard deviation of 5 model repetitions. 

3.4.3. Effect of Varying Parameters 

Parameters for example cells were selected with the goal of maximizing chirp-

direction sensitivity and BE MTF tuning. The following section illustrates the contribution 

of each parameter to the model responses to chirps and AM noise. In each case, all 

parameters except one were held constant to the values listed in Table 3.2. 

𝑁𝑁𝐶𝐶𝐶𝐶 represented the number of identical on-CF excitatory inputs arriving to the 

octopus cell, and 𝑁𝑁𝐶𝐶𝐶𝐶 = 𝐿𝐿, the number of active inputs required for the octopus cell to 

respond. For the low-CF, upward-sensitive, octopus-cell example, decreasing 𝑁𝑁𝐶𝐶𝐶𝐶 from 4 

to 2 resulted in increased rates in response to all stimuli (Fig. 3.7A), ultimately making 

the model IC neuron less downward-sensitive (Fig. 3.7B), and reducing the amplitude of 

the peak in the BE MTF (Fig. 3.7C). Conversely, increasing 𝑁𝑁𝐶𝐶𝐶𝐶 from 4 to 6 reduced the 

octopus-cell response rates (Fig. 3.7A), resulting in less octopus-cell inhibition to the IC 

cell, and again a less downward-chirp sensitive RVF (Fig. 3.7B). It was apparent that 

there was an optimal value for 𝑁𝑁𝐶𝐶𝐶𝐶 that maximized the desired chirp-direction sensitivity. 

For mid-and-high-CF neurons, this value was 3, whereas for low-CF neurons, 𝑁𝑁𝐶𝐶𝐶𝐶 = 4 

resulted in the strongest chirp-direction sensitivity. 
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Figure 3.7 – Impact of varying 𝑁𝑁𝐶𝐶𝐶𝐶 on responses of an example low-CF (1 kHz) model 
cell with downward-sensitive IC output (Green – 𝑁𝑁𝐶𝐶𝐶𝐶 = 2, orange – 𝑁𝑁𝐶𝐶𝐶𝐶 = 4, purple – 𝑁𝑁𝐶𝐶𝐶𝐶 
= 6). Responses for 𝑁𝑁𝐶𝐶𝐶𝐶 = 4 are also shown in Figs. 3.4A-C. A) octopus cell RVF; B) IC 
RVF; C) IC MTF. 

In general, ∆ described the integration windows of CDs. Per Krips and Furst 

(2009b), this value should be smaller than the refractory period of the neuron. However, 

the integration window for the EE inputs to the octopus cell (∆𝐸𝐸𝐸𝐸) had to be 1 ms or 

greater to capture the desired chirp-direction sensitivity in either the octopus RVF (Fig. 

3.8A, purple line) or the IC RVF (Fig. 3.8B, purple line); smaller integration windows 

resulted in less sensitive neurons (Fig. 3.8B, orange and green lines). Additionally, the 

integration window of the hyperpolarization inhibition (∆𝐻𝐻𝑝𝑝𝑝𝑝) had to be relatively long to 

adequately suppress the excitatory signals (Fig. 3.9). Values of ∆𝐻𝐻𝑝𝑝𝑝𝑝 less than 

approximately 2 ms resulted in octopus-cell RVFs that were not direction sensitive (Fig. 

3.9A, green and orange), and ultimately non-sensitive IC RVFs (Fig. 3.9B, green and 

orange). Implications of these integration window values will be discussed below. Finally, 

the value of the hyperpolarization delay, 𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝, affected octopus-cell chirp sensitivity (Fig. 

3.10A) and sensitivity of the IC RVF (Fig. 3.10B), with short delay associated with 

reduced chirp-direction sensitivity. 
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Figure 3.8 – Impact of varying ∆𝐸𝐸𝐸𝐸 on responses of an example mid-CF (4 kHz) model 

cell with downward-sensitive IC output (Green – ∆𝐸𝐸𝐸𝐸 = 0.1 ms, orange – ∆𝐸𝐸𝐸𝐸 = 0.5 ms, 

purple – ∆𝐸𝐸𝐸𝐸 = 1 ms). Responses for ∆𝐸𝐸𝐸𝐸 = 1 ms are also shown in Figs. 3.5A-C. A) 

octopus cell RVF; B) IC RVF; C) IC MTF. 

 

Figure 3.9 – Impact of varying ∆𝐻𝐻𝑝𝑝𝑝𝑝 on responses of an example mid-CF (4 kHz) model 

cell with downward-sensitive IC output (Green – ∆𝐻𝐻𝑝𝑝𝑝𝑝 = 0.5 ms, orange – ∆𝐻𝐻𝑝𝑝𝑝𝑝 = 1 ms, 

purple – ∆𝐻𝐻𝑝𝑝𝑝𝑝 = 2 ms). Responses for ∆𝐻𝐻𝑝𝑝𝑝𝑝 = 2 ms are also shown in Figs. 3.5A-C. A) 

octopus cell RVF; B) IC RVF; C) IC MTF. 
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Figure 3.10 – Impact of varying 𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝 on responses of an example high-CF (8 kHz) 
model cell with downward-sensitive IC output (Green – 𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝 = 0 ms, orange – 𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝 = 0.2 
ms, purple – 𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝 = 0.4 ms). Responses for 𝑑𝑑𝐻𝐻𝑝𝑝𝑝𝑝 = 0.4 ms are also shown in Figs. 3.6A-
C. A) octopus cell RVF; B) IC RVF; C) IC MTF. 

 At the IC stage, chirp-sensitivity was primarily controlled by the parameters 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 

and 𝑑𝑑𝐸𝐸, the number of inhibitory octopus-cell inputs and the delay of the excitatory input 

relative to the octopus-cell inputs. For the mid-CF, upward-sensitive, example IC neuron, 

when 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 was set at zero, there was no impact of the octopus cell on the RVF (Fig. 

3.11A), but the MTF had a large rate at the peak (Fig. 3.11B). As 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 increased, the 

RVF became upward-sensitive (Fig. 3.11A), but the MTF rate decreased (Fig. 3.11B), 

demonstrating that 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 selection must balance the desired chirp-direction sensitivity 

and prominence of the BE MTF. 
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Figure 3.11 – Impact of varying 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 on responses of an example mid-CF (4 kHz) model 
cell with upward-sensitive IC output (Green – 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 = 0, orange – 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 = 6, purple – 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 
= 12). Responses for 𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 = 6 are also shown in Figs. 3.5D-F. A) IC RVF; B) IC MTF. 

To maximize IC chirp-direction sensitivity, 𝑑𝑑𝐸𝐸 must allow octopus-cell inhibition to 

arrive sufficiently before excitation. For the example mid-CF, downward-sensitive 

neuron, 𝑑𝑑𝐸𝐸 = 0.5 ms resulted in the largest downward-chirp sensitivity (Fig. 3.12A). 

Using a higher value of 𝑑𝑑𝐸𝐸, such as 1 ms, reduced downward-chirp sensitivity (Fig. 

3.12A). 

 

Figure 3.12 – Impact of varying 𝑑𝑑𝐸𝐸 on responses of an example mid-CF (4 kHz) model 
cell with downward-sensitive IC output (Green – 𝑑𝑑𝐸𝐸 = 1 ms, orange – 𝑑𝑑𝐸𝐸 = 0.5 ms, purple 
– 𝑑𝑑𝐸𝐸 = 0 ms). Responses for 𝑑𝑑𝐸𝐸 = 0.5 ms are also shown in Figs. 3.5A-C. A) IC RVF; B) 
IC MTF. 
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The AM-tuning of the model IC neuron was controlled by 𝑀𝑀𝐼𝐼 and 𝑑𝑑𝐼𝐼: 𝑀𝑀𝐼𝐼 defined 

the number of inhibitory CF inputs the neuron received, and 𝑑𝑑𝐼𝐼 defined the delay of the 

CF inhibition relative to the octopus-cell inputs, where 𝑑𝑑𝐼𝐼 − 𝑑𝑑𝐸𝐸 was the delay between CF 

excitation and CF inhibition. If 𝑀𝑀𝐼𝐼 were zero, the tuning of the MTF was not affected by 

same-frequency inhibition (Fig. 3.13B), instead having a flat or possibly band-

suppressed MTF shape. Increasing 𝑀𝑀𝐼𝐼 gave the MTF a BE shape and sharpened the 

peak (Fig. 3.13B), and, as expected, reduced the response rates across all stimuli (Fig. 

3.13A).  

 

Figure 3.13 – Impact of varying 𝑀𝑀𝐼𝐼 on responses of an example mid-CF (4 kHz) model 
cell with upward-sensitive IC output (Green – 𝑀𝑀𝐼𝐼 = 0, orange – 𝑀𝑀𝐼𝐼 = 8, purple – 𝑀𝑀𝐼𝐼 = 16). 
Responses for 𝑀𝑀𝐼𝐼 = 8 are also shown in Figs. 3.5D-F. A) IC RVF; B) IC MTF. 

The delay between CF excitation and inhibition, 𝑑𝑑𝐼𝐼 − 𝑑𝑑𝐸𝐸, determined the location 

of the MTF peak. For the example mid-CF neuron, as this value increased, the BE peak 

shifted to lower modulation frequencies (Fig. 3.14B). The RVF was also affected when 

the delay was small (Fig. 3.14A), illustrating an interaction between the peak modulation 

frequency of the MTF and the shape of the RVF. 
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Figure 3.14 – Impact of varying 𝑑𝑑𝐼𝐼 − 𝑑𝑑𝐸𝐸 on responses of an example mid-CF (4 kHz) 
model cell with downward-sensitive IC output (Green – 𝑑𝑑𝐼𝐼 − 𝑑𝑑𝐸𝐸 = 1 ms, orange – 𝑑𝑑𝐼𝐼 − 𝑑𝑑𝐸𝐸 
= 2.5 ms, purple – 𝑑𝑑𝐼𝐼 − 𝑑𝑑𝐸𝐸 = 4 ms). Responses for 𝑑𝑑𝐼𝐼 − 𝑑𝑑𝐸𝐸 = 2.5 ms are also shown in 
Figs. 3.5A-C. A) IC RVF; B) IC MTF. 

3.5 Discussion 

 These results describe a computational model for both chirp-sensitivity and 

periodicity tuning in the IC. Chirp-sensitivity in the model originated in model PVCN 

octopus cells, which also had characteristics such as OI tone responses and click 

entrainment. Depending on parameter values, IC cells with sensitivity towards either 

chirp direction and with BE-type MTFs could be simulated for low, medium, and high 

CFs. Chirp-sensitivity and periodicity tuning were largely controlled by separate inhibitory 

parameters in the IC. Model parameters had systematic effects on IC RVFs and MTFs, 

allowing responses to be tuned. 

 Responses to tone and click stimuli confirmed that the octopus-cell stage was 

consistent with this cell type’s physiological responses (Fig. 3.3), although the primary 

purpose of this stage was to provide a chirp-sensitive input to the IC. Octopus cells have 

an ideal onset (OI) response to high-frequency tones, with one well-timed response at 

tone onset (Godfrey et al., 1975; Rhode and Smith, 1986). The model octopus cell 

responded to a tone at CF with a peak in the rate function shortly after tone onset, 
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followed by no activity. Frequency-response areas of octopus cells are broad, consistent 

with their wide-dendritic fields (Osen, 1969; Rhode et al., 1983). OI cells tend to have 

thresholds greater than 30 dB, with much higher rates at frequencies lower than CF and 

at high sound levels (Rhode and Smith, 1986; Rhode, 1994), as does the model RM 

(Fig. 3.3 B). Octopus cells are also characterized by entrainment to modulated stimuli 

such as click trains, responding with one precisely timed action potential for every cycle 

for frequencies up to 500-800 Hz (Godfrey et al., 1975; Rhode, 1994; Oertel et al., 

2000), similar to model responses (Fig. 3.3C). Finally, the model click MTF (Fig. 3.3D) 

increased monotonically up to 600 Hz, a slightly lower frequency than observed in OI 

neurons, which entrained up to 700 Hz to clicks of a comparable level (Godfrey et al., 

1975). 

 The results of this modeling study agree with the physiological results of our 

previous study of the responses of rabbit IC neurons to chirp stimuli (Mitchell et al., 

2023). Diverse chirp sensitivity was observed across all CF ranges (Mitchell et al., 

2023). Here, we show that it was possible to choose model parameters to produce chirp 

sensitivity for a similar range of CFs. In physiology, chirp-direction sensitivity is more 

common towards low-speed chirps (< 2 kHz/ms) than towards high-speed chirps (> 2 

kHz/ms), a result also observed in model responses (Fig. 3.4-6). For many example IC 

model responses, rate-differences between the fastest chirp-pairs were smaller than for 

slower chirp-pairs (Fig. 3.5B), and sometimes displayed bias towards the opposite 

direction (Fig. 3.5E). This property of RVFs at high chirp-velocities, also observed in 

some physiological responses (e.g., Fig. 2.4D, Mitchell et al., 2023), may occur when 

chirps of opposing directions begin to resemble each other as representations in the AN 

become more click-like. 
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 Also, Mitchell et al. (2023) suggested that chirp-direction sensitivity and 

periodicity tuning in the IC originate from different neural mechanisms that create two 

distinct feature sensitivities. This conclusion was echoed in the modeling results—chirp-

sensitivity in the model was strongest when octopus-cell inhibition arrived about 1 ms 

before the IC excitatory input (Fig. 3.12), and BE MTF peaks were highest when the 

same-frequency inhibition arrived more than 1 ms after IC excitation (Fig. 3.14). That 

these inhibitions functioned best when their timings did not coincide suggests that they 

come from separate inputs. 

 In the six example model neurons shown (Fig. 3.4-6), the low-CF octopus cell 

RVFs (Fig. 3.4) display less uniform direction bias than high-CF octopus cell RVFs (Fig. 

3.6). However, direction sensitivity is not observed less frequently in low-CF neurons—

rather, this difference is likely a result of the parameter-fitting process. The difference 

between CF and optimal OCF is much closer for a low-CF octopus cell than for a high-

CF one. For the 1-kHz, upward-selective neuron, the spacing between CF and OCF is 

only 100 Hz, while for the 8-kHz, upward-selective neuron, it is 2.5 kHz. The chirp 

stimulus passes through these frequencies linearly, requiring much more precise fitting 

of the delay parameter 𝑑𝑑𝐶𝐶𝐶𝐶 for the low-CF octopus cell to achieve the same direction 

bias as the high-CF one. 

 Krips and Furst (2009a,b) showed that CD responses are NHPPs for an 

integration window Δ much smaller than the refractory period of their inputs. They 

suggested a Δ of 200 μs for EI CDs and 20 μs for EE CDs (Krips and Furst, 2009a). The 

rationale for the limitation of Δ is to prevent multiple spikes from the same input from 

occurring within the integration window, thereby triggering a response without a 

coincidence from multiple inputs. However, here, a small ∆𝐸𝐸𝐸𝐸 (≤ 100 μs) resulted in the 
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model octopus cell, and subsequently the model IC neuron, having greatly reduced 

chirp-direction sensitivity (Fig. 3.8). A short ∆𝐻𝐻𝑝𝑝𝑝𝑝, the hyperpolarization integration 

window, also reduced chirp sensitivity (Fig. 3.9). Due to the long integration windows 

used in the model, which appear to be necessary to ensure chirp-direction sensitivity, 

the model output would not be a NHPP. This is a limitation of the current model, 

potentially preventing its use in estimating psychophysical detection thresholds for 

various stimulus parameters. However, the prerequisite for long integration windows 

would be expected for a model of a chirp-direction sensitive neuron with widely spaced 

CF inputs. Conceptually, there is a natural trade-off between difference in input CF and 

length of integration window—when inputs are far apart in CF, they necessarily require a 

larger Δ. Also, KL hyperpolarizations have relatively long timescales compared to the 

suggested integration windows (Golding et al., 1995). Long ∆𝐻𝐻𝑝𝑝𝑝𝑝 may be unavoidable if 

treating KL hyperpolarization as an inhibitory input, as was done here. In the future, it 

might be possible to identify sets of model parameters that allow shorter integration 

windows but still retain chirp-sensitivity. Furthermore, hyperpolarization inhibition cannot 

be treated as independent from its corresponding excitatory input as it is entirely 

conditional upon the excitatory activity. In future work, this limitation could be addressed 

by combining the “locked” excitatory AN input and inhibitory hyperpolarization into a 

complex “excitatory-inhibitory” signal more closely representing the full post-synaptic 

response. 

 Parameters for the example neurons were selected, using a combination of 

parameter optimization and manual selection, to maximize direction-sensitivity. The 

values of these parameters align well with their physiological correlates. For instance, 

octopus cells provide early onset inhibition to the IC via the VNLL (Covey and Casseday, 
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1991). Intracellular recordings in VNLL and IC cells showed that IC cells that received 

VNLL inhibition often displayed an early inhibition before action potentials in response to 

sounds (Nayagam et al., 2005). In the present study, inhibition arriving from the octopus-

cell stage 0.5-1 ms before the excitatory input maximized the chirp sensitivity (Fig. 3.12). 

Additionally, if this inhibition arrived too early or too late relative to excitation, chirp 

sensitivity was diminished. Similarly, the CFs of AN inputs to the octopus cell stage were 

aligned with experimental and modeling studies, which show that these CFs can come 

from a wide range of frequencies: Spencer et al. (2012) estimated CFs of AN inputs to 

octopus cells based on physiological recordings in cats, and determined they can range 

from 1.5 – 40 kHz (Godfrey et al., 1975; Rhode and Smith, 1986). 

 In this paper, octopus cells were proposed as a source of chirp-velocity 

sensitivity for IC cells; however, alternative mechanisms have been proposed for 

frequency-modulation (FM) sensitivity. For example, Pollak et al. (2011) summarized two 

mechanisms other than VNLL-inhibition that could explain sensitivity of IC neurons to FM 

chirps. One of these is the classical explanation for FM sensitivity, based on asymmetry 

in the timing and frequency of excitation and inhibition (Fuzessery and Hall, 1996; 

Gordon and O’Neill, 1998; Andoni et al., 2007). This asymmetry is revealed by 

spectrotemporal receptive fields (STRFs), a technique using spike-triggered averaging to 

generate a kernel used to identify excitatory and inhibitory regions. STRFs have been 

shown to predict the sensitivity of chirp-direction sensitive neurons in bat IC (Andoni et 

al., 2007). Another hypothesis for chirp sensitivity in the IC proposes that cells with high 

input resistances and long time constants could be sensitive to asymmetry in input 

magnitudes, rather than input timing (Gittelman et al., 2009). The modular nature of 
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Krips and Furst’s modeling strategy may facilitate exploration of these additional chirp-

sensitivity mechanisms. 

 In physiological recordings, chirp-sensitive neurons with band-suppressed (BS) 

MTFs, characterized by lower rates in response to modulated stimuli compared to 

unmodulated stimuli, are at least as common as BE ones (Mitchell et al., 2023). It may 

be possible to model chirp-sensitive neurons with BS MTFs by using a similar strategy to 

Carney et al. (2015), which used an inhibitory input from a BE model cell. Implementing 

an inhibitory interneuron would require careful calibration of additional timing parameters 

but may be a useful advancement towards understanding the responses of all chirp-

sensitive IC neurons. 

 The results shown here involved manual selection of IC parameters, with the 

goal of maximizing direction-sensitivity in the RVF; other response characteristics, such 

as the salience of MTF tuning, could be increased at the expense of direction-sensitivity. 

In general, the model parameter space is open-ended, with a potential to simulate 

neurons with differing response features. A strategy of parameter fitting could eventually 

be employed to simulate actual IC neuron recordings. Additionally, keeping in mind the 

sensitivity of these neurons to interaural differences, one possible future direction could 

be to add binaural inputs to the model, with the VNLL inhibition to the IC driven by 

contralateral octopus cells (Vater et al., 1997). 

 The model presented here for IC chirp-velocity sensitivity and AM tuning provides 

a tool for investigating the contribution of velocity sensitivity to complex sounds, such as 

speech responses. In speech stimuli, phase shifts due to vocal-tract filtering (Klatt, 1980) 

would result in frequency chirps within pitch periods. An IC model that is sensitive to 
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chirp velocity may improve the accuracy of predictions of physiological responses to 

speech sounds. Given the ubiquity of such neurons in the IC (Mitchell et al., 2023), such 

a study would be important in elucidating the processing of speech in the midbrain. 
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Chapter 4: Examining the Impact of Chirp-Sensitivity on Vowel 

Coding in the Inferior Colliculus 

4.1 Abstract 

  The inferior colliculus (IC) is an important brain region to understand 

neural encoding of complex sounds due to its diverse sound-feature sensitivities and 

capacity to utilize peripheral nonlinearities. Fast spectrotemporal changes, known as 

chirps, are contained within pitch-periods of natural vowels. Recent physiological studies 

in rabbit IC demonstrate that IC neurons are sensitive to chirp direction and velocity. 

Here, we use a combination of physiology and modeling strategies to assess the impact 

of chirp-sensitivity on vowel coding. Neural responses to vowel stimuli were recorded 

and vowel token discrimination was evaluated based on average rate and spike timing. 

Response timing was found to result in higher classification accuracy than rate. 

Additionally, rate bias towards low-velocity chirps, independent of chirp direction, was 

shown to correlate with higher vowel classification accuracy based on timing. Also, 

direction bias in response to chirps of high velocity was shown to correlate with vowel 

classification accuracy based on rate and timing. Responses to natural vowel tokens of 

individual neurons were simulated using an IC model with controllable chirp sensitivity—

responses of upward-biased, downward-biased, and non-direction-biased were 

generated. Manipulating chirp sensitivity clearly influenced response profiles across 

natural vowel tokens and model neuron discrimination, though more work is needed 

relating model responses to similar neurons in physiological recordings. 
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4.2 Introduction 

 Vowels carry vital linguistic information and are an important signal for speech 

perception (Kewley-Port et al., 2007). Acoustically, vowels are defined by the shape of 

their harmonic spectra, and by the fundamental frequency (F0) which is determined by 

the pitch of the speaker’s voice. Vowels can be distinguished from one another by the 

frequencies of the spectral peaks, or formants, resulting from vocal-tract filtering (Fant, 

1960). The first two formant frequencies, referred to as F1 and F2, are sufficient for 

vowel identification (Hillenbrand et al, 1995). It is important to understand how the 

auditory system converts these acoustic spectral peaks into a neural code by which 

vowel discrimination is accomplished. However, non-linearity in the auditory system 

shapes neural representation of these signals such that the underlying mechanisms 

supporting vowel coding at various levels of the auditory system are not well understood. 

Traditionally, studies of speech coding in the auditory nerve (AN) have established 

average rate and temporal fine structure to be primary candidates for vowel identification 

(Sachs and Young, 1979; Young and Sachs, 1979), but both of these fail at moderately 

high sound levels (Delgutte and Kiang, 1984a) or in background noise (Delgutte and 

Kiang, 1984b), suggesting that a more comprehensive vowel code may take shape 

elsewhere in the auditory system. 

 The inferior colliculus (IC) is a nearly obligatory synapse in the ascending 

auditory pathway (Aitkin and Phillips, 1983). In addition to spectral tuning to a 

characteristic frequency (CF) (Schreiner and Langner, 1997), IC neurons commonly 

display sensitivity to amplitude modulation (AM) (Joris et al., 2004). Modulation transfer 

functions (MTFs), which depict neural rate versus modulation frequency (Kim et al., 

2020), reveal that the best modulation frequencies (BMFs) of IC neurons span the F0-
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range of speech (Langner, 1992; Krishna and Semple, 2000). Sensitivity to F0 

periodicity has been suggested to underlie a representation of vowels in the IC by 

converting neural fluctuations in the periphery to rate coding of formants (Carney et al., 

2015; Carney, 2024), and is an example of how speech coding can emerge from 

sensitivity to sound features. 

 Beyond AM tuning, most IC neurons are also sensitive to the velocity of fast 

frequency chirps resulting from phase-differences between components in harmonic 

sounds (Steenken et al., 2023; Henry et al., 2023; Mitchell et al., 2023). This sensitivity 

is reflected in large rate differences in response to chirps having opposite directions but 

identical speeds. Sensitivity to chirp direction has been observed in the majority of IC 

neurons tested (Mitchell et al., 2023); yet, the implications of chirp-velocity sensitivity for 

vowel processing are unknown. Phase-differences between harmonics, which are 

associated with frequency chirps, are a feature of natural speech due to the resonant 

characteristics of the vocal-tract filter. A related feature of vowels, the group-delay 

functions that track time delay versus frequency, indicate peaks in time lag at and 

around formant frequencies (Bozkurt et al., 2006; Rajan et al., 2013). 

 In this paper, we test the hypothesis that IC chirp sensitivity affects neural coding 

of vowels using physiological and modeling methods. Examining the responses of IC 

neurons to natural vowels, we evaluate the impact of chirp-direction bias on average rate 

and temporal coding of vowels. Finally, using a model of chirp-sensitive IC neurons, we 

simulate physiologically plausible responses to vowel stimuli and compare them for 

model cells with and without chirp sensitivity. 
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4.3 Methods 

In order to test the hypothesis that chirp-sensitivity of IC neurons impacts 

responses to vowels, we employed a combination of physiology and modeling methods. 

4.3.1 Neural Recordings 

 Physiological methods are described in detail in Mitchell et al. (2023). Briefly, 

extracellular neural recordings were made in the central nucleus of the inferior colliculus 

(ICC) of awake Dutch-belted rabbits (Oryctolagus cuniculus) using tetrodes. Data were 

collected in a total of 5 animals with normal hearing, assessed using distortion product 

otoacoustic emissions (DPOAEs). All methods were approved by the University of 

Rochester Committee on Animal Resources. 

An initial craniotomy procedure was conducted to attach the headbar and implant 

the microdrive and initial tetrodes in the ICC. Multiple surgeries were conducted to 

remove and replace the tetrodes. All surgeries were performed with anesthesia, using 

ketamine (66 mg/kg) and xylazine (2 mg/kg), administered intramuscularly. Time 

between tetrode replacement surgeries was approximately 1-3 months; in between 

these, tetrodes were advanced and retracted using the implanted microdrive, as needed, 

to locate new neurons. Data collection was conducted daily in 2-hour sessions in a 

sound-attenuated booth. Sound was delivered to the rabbits via custom-made earmolds. 

At the beginning of every session, the system was calibrated to compensate the stimuli 

for the frequency response of the acoustic system. 

 Voltage recordings were made using an RHD recording system (Intan 

Technologies, LLC., Los Angeles, CA, USA) and Intan software. To identify single-unit 

action potentials (spikes), the voltage recording was filtered using a 4th-order Butterworth 
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bandpass filter (300 – 3000 Hz). Spikes were identified when the voltage recording 

exceed a threshold defined as four standard deviations of the signal. Features of the 

spike waveforms were used to sort spikes into clusters, primarily the slope of 

repolarization (Schwarz et al., 2012). Clusters were identified as single-unit neural 

responses when less than 2% of the inter-spike intervals were shorter than 1 ms. 

Neurons identified in consecutive sessions were considered unique only if both tetrode 

location and response properties changed. 

4.3.2 Stimuli 

 Frequency response maps (RMs) were used to assess characteristic frequency 

(CF), defined as the frequency that elicited the highest response rate at threshold level. 

To generate RMs, a series of 0.2-s-duration tones were presented at different levels (13-

, 33-, 53-, and 73-dB SPL) and frequencies (250 Hz—16 kHz) in random order. Each 

tone was presented 3 times, either contralaterally or diotically, and included 10-ms 

raised-cosine on/off ramps. Tones were separated by 0.4 s of silence. 

 Modulation transfer functions (MTFs) were used to assess neural 

sensitivity to amplitude modulation (AM). To generate the stimulus, a 1-s-duration 

wideband noise (100 Hz—10 kHz) was generated for each repetition at 33 dB spectrum 

level (overall level of 73 dB SPL). Then, the noise was 100% sinusoidally amplitude 

modulated, with modulation frequency in a range 2-350 Hz, with 3 steps per octave. 

Each modulation frequency was presented a total of 5 times in random order. Stimuli 

were presented diotically, with 50-ms raised-cosine on/off ramps. MTFs were 

categorized based on their shape into one of four categories: band-enhanced (BE) 

neurons have significantly increased rate for a band of modulation frequencies relative to 
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unmodulated rate (Kim et al, 2020; Mitchell et al., 2023). Band suppressed (BS) neurons 

had significantly decreased rate for a band of modulation frequencies relative to 

unmodulated rate. Hybrid (H) neurons had both a band of increased and a band of 

decreased rates relative to unmodulated rate. Finally, flat (F) neurons had no 

significantly different bands compared to unmodulated. 

 Rate-velocity functions (RVFs) were used to evaluate neural chirp-sensitivity 

(Mitchell et al., 2023). To generate the stimulus, a set of chirps were generated with 

velocities ±0.40, ±0.80, ±1.59, ±3.16, ±6.24, and ±9.24 kHz/ms (equivalent to Schroeder-

harmonic complex of fundamental frequency (F0) 25, 50, 100, 200, 400, and 600 Hz, 

respectively, with instantaneous frequencies spanning from F0 to 16 kHz). To normalize 

energy in these variable-duration chirps, stimuli were assigned a sound level equal to 

68 dB SPL − 10 × log10(𝑇𝑇/𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟), where 𝑇𝑇 is the duration of the chirp, and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 2.5 ms 

(duration of the chirp of ±6.24 kHz/ms). Additionally, raised-cosine on/off ramps were 

applied with duration equivalent to 10% of chirp duration. Then, chirps were presented in 

a random order, separated by 40—60 ms of silence to ensure aperiodicity. Each chirp 

was presented a total of 840 times. Response rate was calculated by summing spikes 

over a 15-ms time window starting at an estimate of the neural latency based on the 

response to a 73-dB tone at CF (from the response map).  

 Vowel stimuli were from Hillenbrand et al. (1995), a database that contains 

English vowels from a variety of speakers. All twelve vowels included in this database 

were presented, including /iy, ih, ei, eh, ae, ah, aw, oo, uw, er, oa, uh/. The stimuli 

consisted of 200 ms of the steady-state center portion of the vowels. A 25-ms raised-

cosine on/off ramp was applied. Stimuli were presented diotically, at 68 dB SPL, and 
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with 30 repetitions per vowel. Responses presented here were for the three speakers of 

ID “M03”, “M40”, and “W39” (designated in the Hillenbrand dataset), who had average 

fundamental frequencies of 95, 148, and 202 Hz, respectively.  

4.3.3 Vowel Component Decomposition 

 In order to evaluate the chirp cues contained in spoken vowels, the magnitude 

and phase spectra of the stimuli were estimated, as follows (Yasi, 2004; Ramamurthy 

and Raghavan, 2013). First, each 200-ms-duration vowel stimulus was divided into four 

50-ms segments, and the Welch power spectrum was evaluated for each. The peaks of 

the power spectrum were identified up to 3.5 kHz—these peak frequencies were the 

initial estimates of harmonic components. Note that to reject spurious, non-harmonic 

peaks, power spectrum peaks that differed by less than 65% of average F0 were 

removed. 

Next, a set of bandpass filters was designed to isolate each harmonic. Filters 

were designed with a 20-Hz passband centered around each component frequency, and 

a stopband cutoff above and below the component frequency by F0/2. The Matlab 

function “kaiserord” was used to generate Kaiser-window filter parameters for a finite 

impulse response (FIR) filter. The Kaiser window was chosen for its linear phase 

response. The Matlab function “fir1” was used to generate the filter. 

The response of the filter to the original signal was approximately the waveform 

of the isolated harmonic component. Using the Matlab function “fmincon”, the frequency, 

magnitude, and phase of the harmonic were estimated, using the sum of squared errors 

as the objective function and a starting value of the frequency based on the power 
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spectrum peak. To prevent phase optimization from becoming stuck at the bounds, 

phase was constrained to -2𝐶𝐶 – 2𝐶𝐶, and later assigned equivalent phase between -𝐶𝐶 – 𝐶𝐶. 

The analysis was repeated for each peak in the power spectrum up to 3.5 kHz to 

estimate the vowel spectrum. To illustrate the fast frequency chirps within the vowel 

stimuli, due to phase transitions in the spectra near formants, a synthetic version of the 

vowel was generated that had a uniform magnitude spectrum and the estimated phase 

spectrum. To illustrate the within-pitch-period frequency chirps contained within each 

resulting synthetic vowel, spectrograms were generated using the Matlab function 

“spectrogram”. These were generated using Hamming windowing over 600-sample 

segments, and allowing for 590 samples of overlap between segments, with an overall 

sampling rate of 48828 samples/sec. Finally, formant frequencies of the Hillenbrand 

vowels were identified using Praat analysis. 

4.3.4 Response Analysis and Classification 

 To assess how IC neural responses could distinguish vowels, two classification 

matrices were constructed based on responses to each speaker (F0), one using average 

rate and one using temporal information. The average rate in response to a given 

repetition of one vowel was calculated, and the overall average rates across repetitions 

in response to each of the 12 vowels was calculated, excluding the current repetition. 

Each repetition was classified as the vowel for which the absolute difference between 

the single-repetition rate and overall average rate was minimal. 

 Vowel classification based on spike timing used a strategy developed by 

Satuvuori et al. (2017) called rate-independent spike (RIS) distance, a measure of the 

temporal similarity of two spike trains that is unaffected by average rate. Briefly, the 
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method involves matching each spike to its closest neighbor in the other spike train. A 

profile of each spike train is constructed describing temporal similarity to the other train 

on a sample-by-sample basis. Averaging the two profiles and dividing by the local 

average rate of the two spike trains yields a final distance estimate (Satuvuori et al., 

2017). The RIS distance is a value between 0 and 1 that evaluates similarity solely 

based on spike timing (Satuvuori and Kreuz, 2018). For classification, the RIS distance 

for every possible pair of spike trains was calculated (Fig. 4.1). Each repetition was 

classified as the vowel with the smallest average RIS distance, excluding self-

comparisons. 

 

Figure 4.1 – An illustration of the calculations performed in the RI-SPIKE distance metric 
(Graphic obtained from Kreuz et al., 2012). In the calculation, for each time-sample 
(indicated by vertical dashed line), several functions describe spike timing on either 
spike trains. This includes the minimum distance between spikes between the two trains 
for the previous spike (𝑃𝑃𝑃𝑃) and the following spike (𝑃𝑃𝐶𝐶), the interval between the current 
sample and the previous spike (𝑥𝑥𝑃𝑃) or the following spike (𝑥𝑥𝐶𝐶), and the inter-spike 
interval at the current time sample (𝑥𝑥𝐼𝐼𝑆𝑆𝐼𝐼). Together, these functions form the profile from 
which the RI-SPIKE distance is calculated. 
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For both methods, a classification matrix was generated by tallying the classifier results 

on true vowel vs. predicted vowel axes. Vowel-by-vowel accuracy was assessed using 

the formula 

𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑐𝑐𝑉𝑉 =  
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁 + 𝑅𝑅𝑃𝑃 + 𝑅𝑅𝑁𝑁
 

Here, true positives (TP) is the number of correct predictions of the vowel (the square on 

the diagonal). True negatives (TN) is the number of correct rejections (all other squares 

on the diagonal). False positives (FP) is the number of incorrect predictions of the vowel 

(all squares in the vowel’s column except the diagonal). False negatives (FN) is the 

number of incorrect rejections of the vowel (all squares in the vowel’s row except the 

diagonal). 

 Additionally, the overall accuracy of the classifier can be calculated by dividing 

the total number of correct predictions (sum of squares on the diagonal) by the total 

number of incorrect predictions (sum of squares not on the diagonal). 

 To extract prominent features of the population of RVFs, as in Mitchell et al. 

(2023), Principal Component Analysis (PCA) was conducted using the Matlab function 

“PCA”. RVFs were normalized by individual peak rates before analysis. Note that 

principal component analysis performed in this study used a different set of neurons than 

those used in Mitchell et al. (2023), although some overlapped. Thus, the exact shape of 

the first three principal components is not the same between the two studies. However, 

the resulting principal components are similar between studies and the same 

interpretation can be applied to PCA using both sets of neurons.  



115 
 

Additionally, a metric based on receiver-operating characteristic (ROC) analysis 

(Egan, 1975) was used to measure the extent of direction selectivity in high-velocity (< 2 

kHz/ms) chirp responses, independent of direction. ROC was used to measure the 

discriminability of chirp direction based on single-chirp repetition response rates for 

chirps of equivalent speeds (absolute value of velocity) but opposite directions. 

Calculating the area-under-the-curve of the resulting ROC function gave the direction 

bias (DB) per velocity pair as a number from 0 to 1, where 0 indicated downward bias, 

and 1 indicated upward bias. To obtain high-velocity direction bias (HVDB), the DBs of 

the velocities greater than 2 kHz/ms (3.16, 6.24, and 9.24 kHz/ms) were averaged. 

Then, HVDB was calculated using 𝐻𝐻𝑅𝑅𝐻𝐻𝐻𝐻 = 2 ∗ 𝑎𝑎𝑏𝑏𝑎𝑎(𝐻𝐻𝐻𝐻���� − 0.5), where 𝐻𝐻𝐻𝐻���� is the mean of 

DBs. HVDB described direction bias, independent of direction, on a scale from 0 to 1, 

with 1 indicating strong direction bias. 

4.3.5 Modeling 

 The model for IC-cell chirp-sensitivity is detailed in Mitchell and Carney (2024).  

Briefly, the mechanism of the model depends on a chirp-direction-sensitive inhibition of 

the IC by the ventral nucleus of the lateral lemniscus (VNLL) originating from octopus 

cells of the posteroventral cochlear nucleus (PVCN). The model uses a strategy 

described by Krips and Furst (2009), in which non-homogeneous Poisson processes 

(NHPPs) representing neural inputs are combined by coincidence detectors (CDs)—the 

responses of these CDs are also NHPPs (Krips and Furst 2009). Thus, the responses of 

IC neurons can be modeled starting from auditory-nerve (AN) model inputs by combining 

them using inhibitory and excitatory CD stages. 
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 In the Mitchell and Carney (2024) model, there are two model stages: an 

octopus-cell stage and an IC stage. The octopus-cell stage receives two AN inputs of 

different frequencies, on-CF (the CF of the final IC neuron) and off-CF (OCF). Identical 

CF inputs together numbering NCF effectively increase input magnitude, such that the CF 

input alone is suprathreshold. Additionally, both AN inputs elicit a delayed 

hyperpolarization input that acts like an effective inhibition—hyperpolarization 

suppresses excitatory output equivalently for both CF and OCF inputs. Thus, a 

mechanism that detects input sequence emerges: a chirp eliciting the CF input first is 

likely to result in an excitatory response. Meanwhile, a chirp eliciting the OCF input 

before the CF input will have the excitatory response suppressed by the coinciding 

hyperpolarization. 

 The IC stage receives one on-CF excitatory input, and two inhibitory inputs: one 

from the  octopus-cell model and one relayed from an on-CF AN model. The on-CF 

excitation and inhibition are delayed by delay parameters 𝑑𝑑𝐸𝐸 and 𝑑𝑑𝐼𝐼, where the 

difference between the two tunes the final neuron’s MTF in a manner described by the 

same-frequency inhibition-excitation (SFIE) model (Nelson and Carney, 2004). The 

output of the IC-model stage has chirp-sensitivity opposite to that of the inhibitory 

octopus stage, and it has a BE MTF (Mitchell and Carney, 2024). 

 In order to test the hypothesis that chirp sensitivity impacts vowel classification, 

six model neurons were created. Three of these model neurons had 2-kHz CFs, and 

three had 1-kHz CFs, to directly compare the model to similar units for which 

physiological recordings were available. For both CF groups, one neuron had upward 

bias, one neuron had downward bias, and one neuron was non-selective (NS). These 

direction biases resulted from different octopus-cell-stage parameters, or in the case for 
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NS neurons, no octopus-cell-stage inhibition. The parameters of these model neurons 

are described in Table 4.1. Note that the upward and downward-biased 1-kHz-CF model 

neurons are identical to those described in Mitchell and Carney, 2024 (their Fig. 2.4). 

Additionally, to ensure comparable average rates across vowels between the model 

neurons and units from physiology, model neuron rate functions were normalized such 

that their average rates across vowels match (2-kHz-CF model neurons were matched 

to unit 1, with average vowel rate of 127.03 spk/s; 1-kHz-CF model neurons were 

matched to unit 4, with average vowel rate of 88.50 spk/s). Rate multipliers are reported 

in Table 4.1. 

Table 4.1 – Parameter values for model neurons. For NS neurons, non-applicable 
parameters are listed as “N/A”. 

CF 
(kHz) 

Direction 
bias  

OCF 
(kHz) 

𝑑𝑑𝐶𝐶𝐶𝐶 
(ms) 

𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 
(ms) 

𝑁𝑁𝐶𝐶𝐶𝐶  𝑀𝑀𝑂𝑂𝑐𝑐𝑝𝑝 𝑀𝑀𝐼𝐼 𝑑𝑑𝐸𝐸 
(ms) 

𝑑𝑑𝐼𝐼 
(ms) 

∆𝑂𝑂𝑐𝑐𝑝𝑝 
(ms) 

∆𝐼𝐼  
(ms) 

Rate 
Mult. 

2 Up 1.00 0 0.45 3 10 10 1.2 3.7 1 1 4.77 
2 Down 3.00 1.00 0 3 10 10 1.2 3.7 1 1 4.16 
2 NS N/A 0.30 0 N/A 0 10 1.2 3.7 1 1 2.61 
1 Up 0.90 0 0.45 4 12 16 1.4 3.4 1 1 4.80 
1 Down 2.21 1.00 0 4 12 8 1.4 3.5 1 1 2.31 
1 NS N/A N/A N/A N/A 0 8 1.4 3.9 1 1 2.37 

 

 In order to apply RI-SPIKE distance metric to model neurons, spike times were 

generated based on rate functions output by the model. For each time sample, a random 

number was generated (range 0 – 1, uniformly distributed, Matlab’s “rand” function). A 

spike was generated at that time if the random number was less than the value of the 

rate function divided by the sampling rate (100,000 samples/sec). Additionally, an 

absolute refractory period of 1 ms was applied, so that no spikes were generated 

regardless of the random input. 
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4.4 Results 

 To test for the presence of chirps in vowels, center-tokens of Hillenbrand-vowel 

stimuli were analyzed using component-phase decomposition (Yasi, 2004; Ramamurthy 

and Raghavan, 2013). Figure 4.1 depicts magnitude spectra (left) and several periods of 

synthesized vowels (right) produced by this analysis (/aw/, /ih/, and /uw/, all 95-Hz-F0 

speaker). For each of the formant frequencies, F1-F3, there is an associated inflection in 

the vertical white bands of the synthesized vowel, indicating a local chirp (or frequency 

sweep). This inflection is characterized by positive (upward) chirps just below the 

formant frequencies and/or negative (downward) chirps just above the formant 

frequencies—this pattern is consistent with peaks in group delays that have been 

reported to occur near formant frequencies (Bozkurt et al., 2006; Rajan et al., 2013). 

Note that a synthetic vowel with zero-phase harmonics would appear as a series of 

vertical lines in this visualization, reflecting no chirp features. 



119 
 

 

Figure 4.2 – Component-phase decomposition analysis for three representative vowels, 
/aw/, /ih/ and /uw/, from a speaker with 95 Hz F0. Left—magnitude spectra of natural 
vowel tokens resulting from vowel component decomposition. Magenta dashed lines 
indicate formant frequencies F1, F2, and F3 (matched by frequency to the corresponding 
synthetic vowel). Right—synthesized vowel resulting from component decomposition. 
The magnitude of these synthesized vowels were flat. Red dots indicate example 
temporal amplitude peaks at frequencies 1.38 kHz and 2.81 kHz (see text). 
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Chirps associated with these inflections are low-velocity and span a limited frequency 

range when compared to chirping stimuli such as Schroder complexes and aperiodic 

chirp stimuli. However, the frequency regions between formant inflections include chirps 

more comparable to these stimuli. The cyan dots on the top spectrogram in Fig. 4.2 

mark temporal amplitude peaks at two frequencies, 1.38 kHz and 2.81 kHz, between F2 

and F3 in the vowel /aw/. There is a time difference of 1.80 ms between these points, 

and a frequency difference of 1.43 kHz, making the local velocity of their 

spectrotemporal difference 0.79 kHz/ms: a comparable, albeit slightly slower, velocity to 

chirps presented for RVFs (which had a range of 0.80—9.24 kHz/ms). However, note 

that local velocities vary between F2 and F3, sometimes changing directions and thus 

approaching near-vertical slopes. Therefore, 0.79 kHz/ms reflects the average chirp 

velocity between these two frequencies, with local chirp velocities exceeding this 

average and approaching infinity. 

Much like the representative vowels in Fig. 4.2, all vowel stimuli have chirp 

inflections at formant frequencies, and faster chirps between formants with equivalent 

velocities to those used in RVFs. These spectrotemporal features represent a rich set of 

cues to which chirp-sensitive neurons may be sensitive. To guide later comparisons of 

these features to neural CFs, Table 4.2 indicates the frequencies of F1 and F2 for the 

set of 95-Hz-F0 vowels (identified via Praat analysis). 

Table 4.2 – Frequencies of F1 and F2 for 95-Hz-F0 vowel stimuli. 

Vowel IY IH EI EH AE AH AW OO UW ER OA UH 
F1 
(Hz) 

372 425 410 563 638 771 666 487 402 449 460 610 

F2 
(Hz) 

2305 1880 2100 1658 1788 1216 1033 1190 1025 1560 812 903 
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Response properties of individual IC neurons toward sound features such as 

frequency, AM, and spectrotemoral chirps are diverse; their responses to vowel stimuli 

are expected to depend on a combination of these feature sensitivities. Figure 4.3 shows 

the response profiles of five example neurons—CF, MTF, RVF, and vowel rate profiles, 

alongside classification matrices based on average rate and timing. These neurons are 

useful case studies to illustrate how response properties may contribute to vowel 

classification. 
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Figure 4.3 – Response profiles of five representative neurons with CFs in the typical F1-
F2 range (< 3 kHz). Column A: MTFs based on AM noise. U on the x-axis indicates rate 
in response to unmodulated noise. Solid black curve depicts smoothed MTF based on 
raw data points. Column B: RVFs, blue indicates upward chirp response, red indicates 
downward chirp response. Error bars depict standard errors. Vertical dashed gray line 
indicates 0 velocity. Column C: Average rate histograms in response to 30 repetitions of 
twelve vowels, 95 Hz F0, taken from Hillenbrand et al. (1995) database. Error bars 
indicate standard deviation. Column D and E: Classification matrices using average rate 
(Column D) and timing (Column E) metrics. Number of classifications is indicated by 
boxed numbers; boxes with no number had no classifications. True positive 
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classifications along unity line are indicated with bold text. Classification matrices are 
based on 30 repetitions of 95-Hz-F0 vowel stimuli.  

CFs of the selected neurons are below 3 kHz, around the frequency range of F1 

and F2. Column A of Fig. 4.3 contains MTFs—Neuron 1, 4 and 5 are BE, and Neuron 2 

and 3 are BS. Column B of Figure 4.3 shows RVFs; Neuron 1’s RVF has a consistent 

and strong bias toward downward chirps, while Neuron 2 has consistently upward-

selective RVF. Neuron 3’s RVF has mixed chirp-direction sensitivity, flipping direction 

bias at 2 kHz/ms. Finally, Neurons 4 and 5 are examples of identical CFs but opposite 

RVF direction-bias, downward (Neuron 4) and upward (Neuron 5). These example 

neurons are representative of the population in that chirp-direction bias is not more 

common among neurons of a specific MTF shape or CF. In all cases, these response 

properties contribute to neural coding of vowels. Vowel response rates are influenced by 

proximity of CF to formant frequencies. BE neurons encode F0-related amplitude 

fluctuations differently than BS neurons, as well as neural fluctuations related to formant 

frequencies. Lastly, given the presence of chirps similar to those in Fig. 4.2, an 

assortment of chirp cues may also influence coding. 

 To assess the performance of vowel discrimination in IC neurons, classification 

matrices were generated for each speaker-F0 and for two classification metrics, average 

rate and timing. The classification matrices in Fig. 4.3 are based on a 95-Hz-F0 speaker. 

In Fig. 4.3, column D, classification matrices based on average rate are shown for the 

example neurons. These grids show the number of single-repetition responses that were 

classified as one of twelve vowels, versus the true vowel used to elicit that response. 

Classifier performance can be assessed by looking at true positives, which are accurate, 

positive predictions of vowels (denoted using bold text). In Fig. 4.3, column C, the 
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average rate profiles are shown, which were used to produce the rate classification 

matrices. Generally, the rate classifier does well those vowels that are rate extrema—for 

instance, Neuron 3 has particularly high accuracy classifying the vowel /er/ due to its 

high average response rate. Neuron 4 accurately classifies the vowel /iy/ due to its low 

average response rate. Average rate classification is comparatively inaccurate for those 

vowels that are not extrema. 

 In Fig. 4.3, column E, classification matrices based on timing are shown, 

specifically the rate-independent SPIKE distance (Satuvuori et al., 2017). Timing 

classification generally outperforms average rate, with individual accuracy reaching 

100% (all 30 repetitions correctly classified) for many vowels. These classification 

matrices indicate that for many neurons (Neuron 1, 2, 4) a vowel coding scheme based 

on timing would be able to correctly classify all twelve vowels presented here. 

 Classification matrices can be summarized using overall accuracy, which sums 

the total number of correct classifications (bold text) and divides by the total number of 

classifications. Using overall accuracy, the performance of the timing-based classifier of 

Neurons 1, 2 and 4 (overall accuracy of 90.8%, 95.8%, and 80.3%, respectively) is 

higher than the rate-based classifier (overall accuracy of 27.5%, 15.0%, and 21.1%, 

respectively). Even for neurons where timing classification overall accuracy is low 

(Neuron 2 and 5, 44.4% and 22.8%, respectively), it outperforms rate classification 

(31.7% and 10.3%). Overall classification is a useful metric to distill the performance of a 

classifier to one metric; however, note that overall accuracies can be expected to be 

quite low relative to vowel-specific accuracies. Given twelve outcomes, a classifier 

operating at chance would have an overall accuracy of 8.3%. In comparison to chance, a 
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classifier able to reliable identify certain vowels like Neuron 3, Column E, still has overall 

accuracy much greater than chance (44.4%). 

 By evaluating classification performance per neuron with a single metric, overall 

accuracy, systematic trends of classification performance versus RVF features can 

begin to be identified. Principal component analysis was performed on the RVFs of the 

subset of neurons with vowel responses to identify their dimensions of highest variability. 

Principal components 1 through 3 (PC1, PC2, and PC3) are shown in Figure 4.4 

(leftmost column). Together, PC1, PC2 and PC3 explained 95.0% of the RVF variance.  
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Figure 4.4 – Results of principal component analysis (PCA) on neural RVFs, and 
subsequent scatter plots and regression analysis comparing overall accuracy based on 
timing to principal components scores. Leftmost column: Principal components 1, 2 and 
3, plotted on loadings-versus-velocity axes. Dashed lines mark zero on both axes to 
assist PCA interpretation. Scatter plots show overall accuracy versus principal 
component scores for individual neurons, organized by speaker-F0 (columns) and 
principal component (rows). Blue regression lines reflect data trend—magenta dashed 
lines indicate 95% confidence intervals. For each fit, a p-value and 𝑅𝑅2 is reported; p-
values are the result of ANOVA, testing the hypothesis that the slope coefficient of the 
linear fit is non-zero. 𝑅𝑅2 reflects variance explained by the linear fit. 

PC1 (Fig. 4.4, left column, top row) reflected an overall average rate feature, 

explaining 88.2% of the RVF variance, suggesting that the most prominent difference 

between RVFs was absolute rate. All loadings for PC1 having positive values, indicating 
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that all rates vary together in PC1. PC2 (Fig. 4.4, left column, middle row), showed a 

tendency for low-velocity rates to covary, and inversely vary with high-velocity rates. In 

other words, neurons with high PC2 tend to exhibit high rates in response to low-velocity 

chirps and low rates in response to high-velocity chirps, regardless of direction. PC2 

explained 4.4% of RVF variance. Finally, PC3 (Fig. 4.4, left column, bottom row) reflects 

RVF direction-sensitivity, especially at low velocities. Neurons with high PC3 are 

positive-chirp biased. PC3 explains 2.5% of RVF variance. It can be seen from these 

results that RVF rates vary in absolute velocity—that is, velocity of chirp irrespective of 

direction—more than chirp direction. 

Quantifying principal component scores for each neuron, trends between RVF 

features and overall accuracy can be established. In Fig. 4.4, scatter plots showing 

overall accuracy versus principal component scores are shown, separated by vowel 

speaker (F0, indicated by column). For each, a regression line was fit to the data, the 

quality of fit described by a p-value (ANOVA, testing the null hypothesis that linear slope 

coefficient ≠ 0) and 𝑅𝑅2 (coefficient of determination, describing variance explained). Most 

notably, PC2 is correlated with overall accuracy for all speakers. P-values were 

consistently < 0.001—furthermore, 𝑅𝑅2 indicate 14.9%, 18.4%, and 29.5% variance 

explained for vowel accuracies with speakers 95, 148, and 202 Hz respectively. In 

comparison to PC2, PC1 and PC3 show little to no correlation with overall accuracy. 

However, note that PC1 vs. 202-Hz vowel accuracy and PC3 vs. 95-Hz vowel accuracy 

have significant p-values, using a significance level of 0.05. 

The overall accuracy values in Fig. 4.4 were taken from classification based on 

timing. In comparison, there were no notable trends in overall accuracy based on 

average rate versus principal-component scores. 
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Based on the data in Fig. 4.4, high chirp-direction bias at low chirp-velocities 

(PC3) has no relationship to overall accuracy—on the contrary, neurons for which low 

chirp-velocities elicit high response rates irrespective of direction (i.e. have high PC2) 

tend to have higher overall accuracy. However, these principal components do not 

directly assess the impact of high-velocity chirp direction bias on accuracy; thus, an 

alternative metric is necessary. High-velocity direction bias metric, described in detail in 

Methods section 4.2.4, quantifies the average direction bias in the response rates to the 

three fastest velocity pairs, ±3.16, ±6.24, and ±9.24 kHz/ms. Figure 4.5 summarizes 

trends of overall accuracy versus high-velocity direction bias, based on both rate and 

timing. 

 

Figure 4.5 – Scatter plots and regression analysis of overall accuracy (based on rate and 
timing classification) versus high-velocity direction bias. Plots are organized by speaker-
F0 (column) and classification metric (row). Blue regression lines reflect data trend—
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magenta dashed lines indicate 95% confidence intervals. For each fit, a p-value and 𝑅𝑅2 
is reported; p-values are the result of ANOVA, testing the hypothesis that the slope 
coefficient of the linear fit is non-zero. 𝑅𝑅2 reflects variance explained by the linear fit. 

 The trend of high-velocity direction bias versus overall accuracy based on rate is 

positive, validated by p-value < 0.001 for all speakers (Fig. 4.5, top row). However, the 

amount of variance explained by this metric is low, at 7.4%, 11.7%, and 12.0% for 95 

Hz, 148 Hz, and 202 Hz speakers, respectively. Similarly, high-velocity direction bias is 

positively correlated with overall accuracy based on timing (Fig. 4.5, bottom row); p-

values < 0.01 for all speakers. Similar to rate-based accuracy, the percentage of 

variance explained by timing-based accuracy is low, at 10.4%, 11.4%, and 9.9% for 95 

Hz, 148 Hz, and 202 Hz speakers, respectively. However, note the difference in range 

between rate- and timing-based overall accuracy; rate-based accuracy is consistently 

low, whereas some individual neurons have near-100% overall accuracy based on 

timing. 

 Vowel classification was assessed for chirp-sensitivity model IC cells (Mitchell 

and Carney, 2024) to assess if they aligned with trends observed in the individual (Fig. 

4.3) and population (Fig. 4.4-5) physiological data. In Figure 4.6, the response profile 

and classification matrices are shown for three model IC neurons with 2 kHz CF, one 

biased towards upward chirps (top row), one biased towards downward chirps (middle 

row), and one without chirp direction bias (non-selective, NS) (bottom row). Model 

parameters are given in Methods section 4.2.5. 
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Figure 4.6 – Response profiles of three model neurons, all with 2-kHz CF. Neurons differ 
by octopus-cell inhibition; in Row 1, responses of an upward-biased model neuron 
receiving downward-biased octopus-cell inhibition are shown. In Row 2, responses of a 
downward-biased model neuron receiving upward-biased octopus-cell inhibition are 
shown. Row 3 shows responses of a non-selective (NS) model neuron that received no 
octopus-cell inhibition. Stimulus responses are otherwise organized identically to Figure 
4.3. 

Due to a limitation of the model, the simulated neurons’ MTFs are all BE, with 

peaks around 100 Hz modulation frequency (Fig. 4.6, Column A). This matches the F0 

of vowel stimuli used to generate the pictured classification matrices (95 Hz). Simulated 

neurons’ RVFs (Fig. 4.6, Column B) differed solely in the presence or nature of octopus-

cell-stage inhibition—the upward and downward biased neurons received inhibition from 

oppositely-biased octopus-cell model cells. The NS neuron (bottom row) instead 

received no inhibition from the octopus-cell stage. 
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 Vowel rate histograms (Fig. 4.6, Column C) depict the average rate profile of the 

neurons’ response to vowels. The downward-biased neuron’s vowel rate profile (Row 2) 

is similar to the NS neuron’s (Row 3); relatively, the upward-biased neuron’s profile (Row 

1) has larger differences to the NS neuron’s, with rate minima and maxima changing 

completely, among other dissimilarities. Notably, average rate across vowels differs by 

neuron. In order to compare vowel classification between model neurons, and also to 

compare these model neurons to a similar unit from physiology (Fig. 4.3, Row 1), model 

rate functions were multiplied by a normalizing factor such that the average vowel rate 

for all three model neurons was equivalent to this physiology unit (values reported in 

Methods). 

 Average rate-based classification matrices are shown in Fig. 4.6, Column D, 

generated using responses to 95-Hz-F0 vowels. Vowels with the most true positives 

tend to be extrema in the rate profiles. Timing-based classification matrices are also 

shown (Fig. 4.6, Column E). Between model neurons, specific vowel classification 

differed in accuracy—in rate-based classification, /er/ is identified reliably for the 

downward-biased and NS neurons, whereas the upward-biased neuron identifies /iy/ 

and /uw/ reliably instead. Using timing, accuracy of classification for some vowels such 

as /aw/ improves in the upward-biased neuron compared to the downward-biased or NS 

neurons. 

 Overall accuracies for rate-based classification (28.1%, 25.3%, and 20.9% for 

upward, downward, and NS neurons, respectively) remain low compared to timing-

based classification (72.8%, 71.1%, and 76.7% for upward, downward, and NS neurons, 

respectively) for these model neurons. In comparison to NS, the addition of octopus-cell 

inhibition benefited rate-based classification, but decreased overall accuracy for timing-
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based classification. However, note that vowel-by-vowel accuracy did not always 

conform to these trends in overall accuracy. 

 In Figure 4.7, response profiles and classification matrices are shown for three 

model IC neurons with 1 kHz CF: upward-biased (top row), downward-biased (middle 

row), and NS (bottom row). For this group, average vowel rates were normalized by that 

of Neuron 4 in Fig. 4.3. 

 

Figure 4.7 - Response profiles of three model neurons, all with 1-kHz CF. Neurons differ 
by octopus-cell inhibition and RVF bias (upward, downward, and NS are shown on the 
top, middle, and bottom rows, respectively). Stimulus responses are otherwise organized 
identically to Figure 4.3. 

 All model neuron MTFs are BE (Fig. 4.7, Column A). Owing to the lower CF (1 

kHz), the direction bias in the model RVFs (Fig. 4.7, Column B) is not as pronounced as 

for the 2-kHz-CF neurons depicted in Fig. 4.6. Nonetheless, the three model neurons 
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display markedly different vowel rate profiles (Column C), despite their similar MTFs and 

identical CFs. In the rate-based classification matrices (Column D), the vowel rate 

profiles again predict classification accuracy. Note that all model neurons display high 

classification accuracy for /ei/ and /uh/, but the upward-biased neuron also shows high 

accuracy for /aw/ and /uw/. Timing-based classification matrices (Column E) show 

vowel-by-vowel accuracy differences as well, /ae/, /aw/ and /uh/ are particularly 

prominent examples. 

4.5 Discussion 

 In this paper, we tested the hypothesis that chirp sensitivity of IC neurons 

influence neural discriminability of natural vowel tokens. Using a strategy of component 

decomposition, we identified chirps within vowel stimuli of a velocity range relevant to IC 

chirp velocity sensitive neurons. Examining confusion matrices generated based on rate 

and timing metrics, vowel classification based on recordings made of IC units in 

physiology was not readily predicted by RVF alone. Also, vowel classification based on 

timing was consistently better than classification based on rate. A population-level 

analysis revealed a relationship of overall accuracy based on timing to Principal 

Component 2 (PC2), a chirp-directionless feature of RVFs related to a rate-bias toward 

low velocities, opposed to high velocities. No relationship between low-velocity chirp 

direction bias (PC3) was found with overall accuracy; however, high-velocity chirp bias 

was found to have a statistically significant relationship to overall accuracy based on rate 

and timing. Finally, a chirp-velocity sensitive model was used to examine the vowel 

classification performance of model cells with and without octopus-cell inhibition. Vowel 

rate profiles differed between otherwise identical model neurons receiving different 
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octopus-cell inhibition. Velocity sensitivity impacts neural response profiles across 

natural vowel tokens, though further work is needed to relate model responses to 

examples in physiology. 

Another method of interrogating the impact of chirp-sensitivity on vowel 

representation is to directly compare model neuron results. In Fig. 4.5, featuring 2-kHz-

CF model neurons, the vowel rate histogram (Column C) appears to differ more greatly 

between upward and NS neurons than downward and NS neurons. This is corroborated 

by the rate-based classification matrices (Fig. 4.5, Column D), which feature different 

salient vowels, as well as by the timing-based classification matrices (Fig. 4.6, Column 

E), in which the upward neuron displays markedly different classification accuracies than 

downward or NS for the vowels /aw/, /oo/, and /ei/, among others. It is interesting to note 

that in Fig. 4.1, it was demonstrated that the vowel /aw/ (95 Hz F0) contained an upward 

chirp between 1.38 kHz and 2.81 kHz. It is possible that the presence of this cue led to 

an elevated classification based on timing for the upward-biased, 2-kHz-CF neuron. It is 

nonetheless clear that different chirp-sensitivities have an effect on vowel-by-vowel 

classification accuracy. 

 A question this work attempts to answer is whether fast spectrotemporal chirps 

contained in vowels, resulting from the phase differences between harmonics due to the 

vocal-tract filter or group-delay functions, contributes to a representation of formant 

frequencies of natural vowels in the midbrain. Results of analysis on vowel responses of 

individual neurons in physiology alone are inconclusive, due to a lack of controlled 

comparisons to similar neurons that differ by direction bias. Ideally, by introducing 

responses from model neurons, comparisons to such physiological units should be 

possible. For example, the CF of physiological neuron 1 (Fig. 4.2) is 2 kHz, MTF is BE, 
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and its RVF is downward biased—we would expect its vowel rate histogram to be similar 

to a neuron with similar response properties. However, comparing this unit’s vowel rate 

histogram to that of model neuron 2 in Fig. 4.5, it is apparent that the profiles do not 

match. Similar lack of correspondence can be seen between physiology neuron 4 (Fig. 

4.2) and 1-kHz model neuron 2 (Fig. 4.6), and physiology neuron 5 (Fig. 4.2) and 1-kHz 

model neuron 1 (Fig. 4.6). One would expect basic response properties of CF and MTF 

shape to drive vowel rate profiles, for instance, proximity of CF to formant frequencies 

would drive higher response rates. The fact that physiology and model neurons that 

share these properties differ greatly between vowel rate profiles, regardless of chirp-

velocity sensitivity, suggest that there are additional factors unaccounted for in the 

model. 

 Of the two RVF features displaying trends with overall accuracy, PC2 reflected a 

chirp-directionless property, instead describing an RVF shape that has high rates in 

response to low chirp velocities, and comparatively low rates in response to high chirp 

velocities. Note that while individual neurons with high PC2 scores may still be direction-

biased for some velocities, this suggests that absolute velocity (i.e. speed) of chirp is 

more indicative of vowel accuracy than direction bias. It is interesting to consider that the 

shape outlined by PC2 would match the RVF of a hypothetical neuron responding only 

to energy at CF—chirps that take a long time to pass through CF (i.e. low velocity chirps) 

would elicit relatively higher rates than faster (high velocity) chirps. In the aperiodic chirp 

stimulus upon which RVFs are constructed, energy between chirps of different velocities 

is normalized by adjusting chirp amplitude; however, this normalization may not 

completely counteract this effect. However, the effect of high-velocity direction bias on 

overall accuracy (Fig. 4.4) should not be understated, suggesting that direction bias 
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remains an important aspect of RVFs to consider. It is clear that a future version of the 

model should add ways to more precisely control directionless chirp-velocity and high-

velocity direction bias of model neurons, so as to better reflect these trends in 

physiology. 
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Chapter 5: Summary and Discussion 

 This thesis quantified the prevalence and nature of chirp direction and velocity 

sensitivity in the IC, proposed and demonstrated the feasibility of a novel computation 

model with chirp sensitivity, and examined the implications of chirp sensitivity to IC vowel 

coding. Throughout this research, we tested the hypothesis that chirp cues contained 

within complex sounds like speech represent cues that impact IC responses to these 

sounds. Evidence that chirp sensitivity is a widespread, independent sound-feature 

sensitivity was identified in physiological recordings, which made use of a novel stimulus 

and direction-bias analysis technique. A computational model was designed, including a 

physiologically-plausible mechanism for IC chirp sensitivity, while building upon and 

preserving features of existing models. Finally, the impact of chirp sensitivity on midbrain 

representation of vowels was explored, demonstrating a significant relationship between 

directionless velocity sensitivity and vowel classification accuracy.  

5.1 Summary and Novel Results 

 Chapter 2 details the development of original experimental aims from preliminary 

extracellular IC recordings in response to SCHR stimuli. The chapter outlines the nature 

of these recordings and the indications that they represented a sound-feature sensitivity 

to chirp direction and velocity. The aims of the physiological experiments are discussed, 

primarily the necessity to separate sensitivity to chirps from the periodicity cue provided 

by SCHR stimuli. Then, a novel stimulus to interrogate this aim is presented, the 

aperiodic chirp stimulus, alongside a novel characterizing technique in the RVF, which 

illustrates chirp response rate as a function of velocity. Through the use of GLM, MTF 

was found to explain a larger percentage of explainable variance in SCHR responses 
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than RVFs, although RVFs alone explained chirp direction selectivity in SCHR 

responses. Additionally, ROC analysis was used to quantify chirp selectivity towards a 

particular direction—this analysis showed that the majority of neurons surveyed showed 

direction selectivity in response to chirps of at least one speed. Finally, PCA was used to 

identify a divide in the population of RVFs at 2 kHz—RVFs tend to have similar response 

rates to low-velocity (< 2 kHz) chirps regardless of direction, and also similar response 

rates to high-velocity (> 2 kHz) chirps regardless of direction. 

 Chapter 3 presents a computational model of IC neuron chirp-sensitivity 

alongside AM tuning. The chapter begins with a review of potential mechanisms that 

might serve as the origin of IC chirp sensitivity, and then identifies inhibition of the IC by 

octopus cells of the PVCN (via the VNLL) as a promising answer. The chapter continues 

by detailing sequence detection, the mechanism by which octopus cells are sensitive to 

chirp velocity. The most notable result of this chapter is the model itself. First, an 

explanation is given of the modeling strategy, first proposed by Krips and Furst (2009). 

The chosen strategy allows for simulation of and hypothesis testing of many model 

architectures due to its modular nature—the strategy allows for the simulation of neurons 

in the central nervous system by preserving the statistics of inputs and outputs, which 

are NHPPs. Each neural stage is a coincidence detector, receiving some combination of 

excitatory and inhibitory inputs. Importantly, this modeling strategy allows for a model 

organization that generally controlled chirp-sensitivity and AM tuning through separate 

inhibitory inputs to the IC stage. Sequence detection in octopus cells is implemented 

using this framework and serves as one inhibitory input to the IC. The IC also received a 

delayed inhibition of the same frequency as excitation, a mechanism shown to produce 

BE MTFs (Nelson and Carney, 2004). The final outcome of this work is a model capable 
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of accurately simultaneously simulating diverse chirp-sensitivity observed in 

physiological work through the use of different model parameters. Example model 

neurons are given mirroring the CF range of neurons recorded from in physiology. 

Finally, the impact of parameter modulation on model responses is explored.  

 Chapter 4 combines physiology and modeling techniques in the previous two 

studies to analyze the impact of chirp sensitivity on IC representation of vowels. The 

chapter begins with a brief overview of the need for alternative vowel coding 

mechanisms beyond rate or TFS in the AN. The chapter also highlights that the IC is a 

promising location for speech coding due to its diverse sound-feature sensitivities, as 

well as its unique capability to take advantage of nonlinearities of the periphery. Then, 

the possibility of chirp cues for formant frequencies existing within vowels is presented, 

with the presence of these related to the phase inflections resulting from vocal tract 

resonances, also described as group-delay peaks. The first outcome of this study 

demonstrated that vowels, originally from the Hillenbrand (1995) database, do contain 

chirp cues that plausibly could encode location of formant frequencies. Secondly, results 

of vowel classification analysis in physiological units were shown—this classification was 

either based on average rate or timing. Timing was universally a more accurate classifier 

than rate. Furthermore, classification of physiological units were compared to similar 

model neurons with varied chirp-sensitivities. Although a clear relationship between 

vowel accuracy and RVF was not observed for these model neurons, vowel-by-vowel 

classifications as well as average rate profiles changed depending on RVF direction 

bias. Finally, statistically-significant positive correlations were identified between 

directionless chirp-velocity sensitivity in the RVF and overall timing classification 
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accuracy, as well as high-velocity direction bias and overall classification accuracy (both 

rate and timing). 

5.2 Future Work 

 Data recorded in multiple species (Morrison et al., 2018; Henry et al., 2022; 

Steenken et al., 2022; Mitchell et al., 2023) show that IC neurons possess remarkable 

selectivity to chirp direction and velocity in responses to laboratory stimuli. The research 

included in this thesis demonstrates chirp sensitivity has the potential to greatly impact 

IC responses, and at minimum represents a necessary aspect to include in the pursuit of 

a comprehensive understanding of IC physiology. In this section, we present future 

avenues of research that might extend the findings of this work towards broader 

applications in auditory neuroscience. 

5.2.1 Alternative chirp-mechanisms for modeling 

 In Chapter 4, directionless velocity-sensitivity in the RVFs in physiological 

recordings was found to be significantly predictive of overall vowel classification 

accuracy based on timing. Specifically, this RVF feature was based on PCA, and 

indicated that neurons responded with similar rates to low-velocity chirps, regardless of 

direction, as well as similar rates to high-velocity chirps, regardless of direction. 

Additionally, RVFs that showed high response rates to low-velocity chirps and low 

response rates to high-velocity chirps were associated with high overall vowel-

classification accuracy. 

 These results were difficult to corroborate using the chirp model. While 

differences did exist between model IC neurons with upward, downward, and non-
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selective RVFs, a systematic relationship between chirp direction and overall accuracy 

was not apparent. Furthermore, attempts to directly interrogate the effect of directionless 

velocity-sensitivity on classification accuracy of model neurons were ineffectual. Also, 

while the chirp model could demonstrably produce RVFs of either upward or downward 

direction bias for a large range of CFs, all types of velocity sensitivity were not 

necessarily possible at every CF—for instance, chirp direction bias at high velocities 

became harder to achieve with low CFs (evident in example model neuron responses 

given in Chapter 3 and Chapter 4). This limitation made direct analysis of high-velocity 

direction bias difficult, another observed trend in the physiological data of vowel 

classification accuracy. 

 Altogether, these limitations suggest a blind spot in the mechanism of the model, 

perhaps rooted in its conception. From the outset, the goal of the model was to 

accurately portray direction and velocity sensitivity to chirps—in practice, the results of 

modeling work were framed in a way that emphasized feasibility of direction bias over 

velocity sensitivity per se. Based on the evidence presented in Chapter 4, the chirp 

model must be updated to better control directionless velocity sensitivity and high-

velocity direction bias in order to more meaningfully examine the impact of chirp 

sensitivity to vowel coding. 

 While octopus-cell inhibition alone is probably not sufficient to explain 

directionless velocity sensitivity, chirp sensitivity in IC neurons is recognized to likely 

originate from multiple different mechanisms combining in variable ways between 

specific neurons, among which octopus-cell inhibition remains a well-suited candidate 

(Pollak et al., 2011; Pollak et al., 2013). As such, one possible improvement upon the 

existing chirp model might be to introduce an additional off-CF input in the octopus-cell 
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stage, as suggested in Chapter 4. Two off-CF input of equivalent frequency-difference 

might impart a symmetry in the RVF that potentially would result in a direction-

insensitive, velocity-sensitive IC neuron. 

 Of remaining theories on formation of chirp-sensitivity in the IC, they can broadly 

be divided into two theories (Pollak et al., 2013): that the exact timing of excitation and 

inhibition shapes chirp-sensitivity (Covey and Casseday, 1999; Fuzessery and Hall, 

1996; Gordon and O’Neill, 2000), or that the overall magnitudes of excitation versus 

inhibition are more important (Gittelman et al., 2009; Gittelman and Pollak, 2011). 

Fortunately, given the flexible nature of the Krips and Furst modeling framework, future 

models seeking to incorporate these mechanisms likely would not have to start anew. 

For instance, theories concerning timing generally argue that the presence of an off-CF 

inhibitory field result in asymmetrical responses to different chirp directions (Brimijoin et 

al., 2005; Andoni et al., 2007; Kuo and Wu, 2012). The Krips and Furst framework 

employed in the chirp model described in this work is well-suited to the task of proposing 

additional off-CF inhibitory inputs. Additionally, such an input may help control high-

velocity chirp sensitivity, due to its ability to impart direction bias on IC RVFs more 

directly than can be achieved using octopus-cell inhibition (which is comparatively more 

indirect). Another timing-based mechanism, early on-CF inhibition, may help a future 

model explain directionless chirp-velocity sensitivity (Fuzessery et al., 2006; Fuzessery 

et al., 2011). This mechanism proposes a “fast-pass” chirp filter, in which chirps passing 

through the neuron’s CF too slowly are inhibited while faster chirps are not (Fuzessery et 

al., 2006). A future model including this mechanism would be capable of directly 

assessing the impact of RVF PC2 on vowel classification accuracy. 
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 Theories concerning differences in magnitude between excitation and inhibition 

take a different perspective on the role of timing, pointing out that timing differences that 

affect the interaction between excitatory and inhibitory post-synaptic potentials (EPSPs 

and IPSPs) can ultimately change the response amplitude, which may be more 

important to the target cell than timing would normally be expected to (Gittelman and 

Pollak, 2011). Once again, the model framework presented is appropriate for such a 

mechanism; after all, the sequence detection mechanism in the octopus-cell stage is 

also based on how timing of EPSPs can result in either suprathreshold or subthreshold 

response. In future work, an IC chirp model that includes some or all of these alternative 

mechanisms will represent a more precise tool to examine the precise impact of certain 

RVF characteristics on vowel responses than the current model. 

5.2.2 Alternative vowel stimuli for increased phase-control 

 In Chapter 4, we examined the responses of both physiological and model IC 

units to real speech stimuli, originally from the Hillenbrand (1995) dataset. While this 

approach had advantages, including ensuring the most realistic possible stimulus was 

presented, there were a number of experimental controls lacking that became apparent 

afterwards. For instance, following the visualization and quantification of the chirp-cues 

surrounding formant frequencies in vowel stimuli, it became desirable to directly alter 

those cues, potentially by adjusting relative phase of harmonic components. One path 

future work might take is the use of synthetic vowels as a primary experimental stimulus. 

 Use of synthetic vowels to specifically examine the impact of phase has 

previously been explored in psychophysical studies to evaluate the impact of hearing 

loss on vowel identification (Leek et al., 1987; Traunmüller, 1987). Other studies have 
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manipulated vowel phase to assess formant phase contrast on vowel identification 

(Molis et al., 2013) or to design a stimulus suitable for investigating speech encoding 

using the auditory brainstem response (ABR) (“peaky speech”; Polonenko and Maddox, 

2021). Such phase manipulations are particularly of interest in the context of responses 

by chirp-sensitive IC neurons. A future study adopting similar stimuli may be able to 

directly test the hypothesis that chirp-sensitive neurons respond to vowel phase. 

5.2.3 Chirp sensitivity in IC neuron types based on molecular markers 

 In the studies presented in this thesis, we classified neurons solely based on the 

nature of their responses to characterizing stimuli—chiefly CF, MTF type, and RVF. The 

long-term nature of our electrode implantation methods made spatial analysis of neural 

populations possible, but difficult, with inexactitude of repeated implantations and 

purported tetrode depths contributing to this difficulty (although, at least one study 

(Morrison et al., 2018) reports a relationship between IC CF and FM responses 

features). 

 Recently work has focused on identifying neuron types of the IC based on 

molecular markers and circuit characteristics (Goyer et al., 2019; Silveira et al., 2020; 

Drotos and Roberts, 2024). In particular, three molecular markers (vasoactive intestinal 

peptide, VIP; Goyer et al., 2019; neuropeptide Y, NPY; Silveira et al., 2020; excitatory 

cholecystokinin, CCKE; Kreeger et al., 2021) have emerged as relating to different IC 

neuron types. These types are hypothesized to illuminate circuit motifs in the IC that 

have heretofore been inaccessible. Future work is currently underway to identify how 

these neuron types may respond to chirps (Drotos and Roberts, 2024). The completion 
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of this work would enable the potential identification of chirp-sensitivity subtypes and 

focus modeling efforts toward neural chirp mechanisms supported by circuit motifs. 

5.2.4 Chirp-sensitivity in Hearing Loss 

 The most common public health concern related to hearing is hearing loss—

typically, noise-related damage in the cochlea or its synapses results in increased 

audiometric thresholds and increased difficulty understanding speech, especially in 

noise (Baer et al., 1993; Makary et al., 2011). Notably, age-related hearing loss is a 

prevalent pathology only in part related to traumatic noise exposure (Makary et al., 

2011). Development of novel therapies and technologies that might assist people with 

hearing loss retain functional speech comprehension is a priority for the betterment of 

public health. 

 Evidence suggests a link between hearing loss and detection thresholds of tones 

in SCHR maskers—listeners with normal hearing may have better tone-detection 

thresholds in -SCHR maskers than +SCHR, whereas listeners with hearing loss had 

identical thresholds (Summers, 2000). Additionally, in a study that utilized synthetic 

vowels with varied phase contrast at formants, normal-hearing and hearing-impaired 

listeners demonstrated ability to identify vowels solely based on phase-shifts, although 

normal-hearing listeners were more sensitive to minor phase differences (Molis et al., 

2013). If sensitivity to chirps and phase can be conceptualized as aspects of the same 

cue, it is possible that chirp-sensitivity is degraded by hearing loss. By this logic, future 

hearing aids may be able alter the phase-spectra of incoming vowels or other complex 

sounds (such as music), exaggerating the presence of chirp cues, which may then be 

more discriminable by chirp-sensitive neurons of the IC. Such a strategy might 
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eventually be employed by advanced machine-learning signal-processing algorithms 

that aim to compensate for hearing loss in a practical and computationally-efficient way 

realistic towards the processing-power available to hearing-assistive devices (Leer et al., 

2024). 
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