Ultrasound Detection of Heterogeneous Accumulated Strain within 3D Printed Patient Specific Abdominal Aortic Aneurysms
Objective: In vivo material properties (i.e. stiffness) of abdominal aortic aneurysms (AAA) determined by strain across the cardiac cycle typically requires custom imaging techniques not readily available in the clinical setting. Even fewer imaging techniques have been able to detect heterogeneous material properties within the circumferentially oriented aorta. Our lab is conducting a validation of our novel ultrasound (US) based accumulated strain algorithm using 3D printed idealized and patient specific AAA tissue mimicking phantoms with heterogeneous material properties under simulated clinic imaging conditions. Our work will be presented at the 2016 Annual Society of Vascular Surgery Meeting in National Harbor, Maryland.
Clinical Study: Pressure Normalized Mean Principle Wall Strain
Objective: Aneurysmal growth is considered part of the natural history of abdominal aortic aneurysmal (AAA) disease but no screening metric exist that can predict future growth and rupture. We are currently enrolling patient with small AAA in a clinic trail to determine of pressure normalized mean principle strain can be used to predict aneurysmal growth. To date we have enrolled over 100 patients. Our primarily data was presented at the 2016 Society for Clinical Vascular Surgery Conference in Las Vegas, Nevada.
Viscoelastic Mechanical Measurements of Human Aortic Tissue
Objective: Individualized patient rupture risk for abdominal aortic aneurysms AAA remains elusive, due to a limited understanding of the biomechanical events that trigger aneurysm growth and eventually aortic wall failure. Pervious work has described some of the static mechanical properties of aortic tissue but importantly there has been a paucity of data describing how physiologic pulsatile hemodynamic energy is stored (E') and released from the aortic wall (E''). We are currently enrolling patient in a clinic trail looking at the viscoelastic material properties of normal and aneurysmal tissue. Our preliminary work will be presented at the 2016 Vascular Research Initiatives Conference and Arteriosclerosis, Thrombosis, and Vascular Biology conferences in Nashville, Tennessee.