Skip to main content
menu

News

20242023202220212020

Subscribe to Neuroscience LISTSERV

Neuroscience Faculty Keeps Anatomy Lab Hands-on Despite Pandemic, Students Excel

Tuesday, December 22, 2020

The class of 104 students who just completed Human Structure and Function, a fundamental course for all medical students, is the top performing class in more than two decades. Human Structure and Function covers anatomy, histology, embryology, and physiology and requires some in-person and hands on learning. This success came despite the challenges of learning and teaching during a global pandemic. "We are exceedingly proud of the students this year for this kind of achievement," said Director of Anatomical Sciences Strand of Human Structure and Function Martha Gdowski, Ph.D., associate professor in the Department of Neuroscience. "I'm equally as proud of the anatomical science educators of the course. Many of us have been doing this a long time, but we were able to adapt to allow the students to be successful."From Left: Jennifer Prutsman-Pfeiffer, Ph.D. (wearing the gown that students were required to wear in the anatomy laboratory), John Olschowka, Ph.D., Sarah McConnell, Ph.D., Sergiy Nadtochiy, Ph.D., Linda Callahan, Ph.D.   Not pictured: David Kornack, Ph.D., Diane Piekut, Ph.D., Martha Gdowski, Ph.D.

Gdowski said the support of Senior Associate Dean of Medical Student Education David R. Lambert, M.D., as well as careful planning and teamwork among faculty, made keeping some in-person learning possible. "We were the only medical school in New York State that didn't modify our teaching strategy for the anatomy lab, but rather spent hours modifying the space and PPE protocols," Gdowski said. "We wanted to deliver an equivalent anatomy lab curriculum to what we've provided in the past." Alternating start and stop times for labs, occupancy limits at the dissection table, and unidirectional traffic in the anatomy corridor, all helped minimize contact. Problem based learning sessions were also in-person and under the same strict guidelines. All large group lectures were virtual. The histology lab was designed with breakout rooms for necessary discussion groups to meet. In spring, faculty also prepared a virtual plan for the anatomy lab that proved to be an invaluable tool. "At first I thought oh this was a lot of work for not much return, but it's been a huge return on investment because it's made it really easy to help students that needed to miss."

Gdowski gives credit to virtual learning for some of the students' success. It gave students longer access to course instruction. But also, she said the change in students' social behavior during the pandemic gave them more time to study. "Students were more self-reliant, they prepared. It was more fun for them and for us as educators because we're really able to help them get through the dissections and really learn what they need to learn in that space. So that's certainly an element that we want to retain moving forward."

The Department of Neuroscience dates to the Anatomy Department -- one of the five original basic science departments of the medical school.

Read More: Neuroscience Faculty Keeps Anatomy Lab Hands-on Despite Pandemic, Students Excel

NGP Student Brendan Whitelaw's Work from the Majewska Lab is Featured in eNeuro

Wednesday, December 2, 2020

Brendan Whitelaw's first author paper, Phosphoinositide 3-kinase γ is not a predominant regulator of ATP-dependent directed microglial process motility or experience-dependent ocular dominance plasticity, was accepted into eNeuro. It is currently being featured on the eNeuroFeatured Research page until December 14th.

Congratulations Brendan!

Brendan's summary of the paper:
One of the more striking features about microglia that facilitates their responses in the physiological and pathological brain is their remarkable attraction to ATP, sensed by the P2Y12 receptor. However, the intracellular signaling mediating this directed motility is largely unknown. Whitelaw et al. show that phosphoinositide-3-kinase (PI3K) activity is required for ATP-mediated microglial motility. However, PI3K??, the isoform directly activated by G-protein coupled receptors, plays only a subtle modulatory role. Thus, P2Y12 likely activates PI3K indirectly to promote microglial motility. Understanding this signaling pathway could be important for specific targeting of microglial responses.

Read More: NGP Student Brendan Whitelaw's Work from the Majewska Lab is Featured in eNeuro

Grant Will Fund M. Kerry O'Banion's Work on Space Travel & the Immune System

Tuesday, December 1, 2020

M. Kerry O'Banion, M.D., Ph.D. has been awarded $1.8 million from NASA to explore the effect space travel has on the immune system and bone marrow, and how that impacts brain function.

The grant is one of 21 research proposals recently awarded by NASA to help answer questions about astronaut health and performance during future long-duration missions, including crewed missions to the Moon and Mars.

Using simulated space radiation produced by particle accelerators at the NASA Space Radiation Laboratory at Brookhaven National Laboratory on Long Island, O'Banion and his team will examine tissue and cellular changes in genes, blood flow, and immune cell function in mice. Behavioral tests and computer-assisted imaging will also be used to quantify damage and inflammation in the brain.

O'Banion -- Professor of Neuroscience and Neurology in the Del Monte Institute for Neuroscience -- and colleagues previously worked with NASA on a study that showed exposure to a particular form of space radiation called high-mass, high-charged particles caused biological and cognitive changes in mice suggesting an accelerated risk for the development of Alzheimer's disease.

This time around, O'Banion will be working with Laura Calvi, M.D., an endocrinologist and co-director of the UR Multidisciplinary Neuroendocrinology Clinic. Her preliminary data found space radiation changes in bone marrow suggestive of a skewed phenotype, in which white blood cells are changed into a more inflammatory phenotype. Similar changes are found with aging. "This helps to bind a common hypothesis about dysfunction and degeneration in multiple systems, with the bone marrow communicating to the brain through the vasculature," O'Banion said.

Memories Create ‘Fingerprints’ That Reveal How the Brain is Organized

Friday, November 20, 2020

While the broad architecture and organization of the human brain is universal, new research shows how the differences between how people reimagine common scenarios can be observed in brain activity and quantified. These unique neurological signatures could ultimately be used to understand, study, and even improve treatment of disorders such as Alzheimer's disease.

"When people imagine similar types of events, each person does it differently because they have different experiences," said Feng (Vankee) Lin, Ph.D., R.N. "Our research demonstrates that we can decode the complex information in the human brain related to everyday life and identify neural 'fingerprints' that are unique to each individual's remembered experience." Lin is an associate professor in the University of Rochester Del Monte Institute for Neuroscience and School of Nursing and co-author of the study which appears in the journal Nature Communications.

In the study, researchers asked 26 participants to recall common scenarios, such as driving, attending a wedding, or eating out at a restaurant. The scenarios were broad enough so that each participant would reimagine them differently. For example, when researchers asked volunteers to vividly remember and describe an occasion involving dancing, one person might recall watching their daughter participating in a dance recital, while another may imagine themselves dancing at a Bar Mitzvah.

The participants' verbal descriptions were mapped to a computational linguistic model that approximates the meaning of the words and creates numerical representations of the context of the description. They were also asked to rate aspects of the remembered experience, such as how strongly it was associated with sound, color, movement, and different emotions.

The study volunteers were then placed in a functional MRI (fMRI) and asked to reimagine the experience while researchers measured which areas of the brain were activated. Using the fMRI data and the subject's verbal descriptions and ratings, researchers were able to isolate brain activity patterns associated with that individual's experiences. For instance, if the participant imagined driving through a red light in the scenario, areas of the brain associated with recalling motion and color would be activated. Using this data, the researchers built a functional model of each participant's brain, essentially creating a unique signature of their neurological activity.

The researchers were able to identify several areas of the brain that served as hubs for processing information across brain networks that contribute to recalling information about people, objects, places, emotions, and sensations. The team was also able to observe how activation patterns within these networks differed on an individual level depending upon the details of each person's recollections and imagination.

"One of the goals of cognitive science is to understand how memories are represented and manipulated by the human brain," said Andrew Anderson, Ph.D., with the Del Monte Institute for Neuroscience and co-author of the study. "This study shows that fMRI can measure brain activity with sufficient signal to identify meaningful interpersonal differences in the neural representation of complex imagined events that reflect each individual's unique experience."

In addition to expanding our understanding of how the brain is networked, the authors point out that many of the key regions they identified tend to decline in function as we age and are vulnerable to the degeneration that occurs in disease like Alzheimer's. The findings could lead to new ways to diagnose and study disorders associated with irregular memory deficits, including dementia, schizophrenia, and depression, and perhaps even personalize treatments and predict which therapies will be more effective.

Additional co-authors include Kelsey McDermott, Brian Rooks, Kathi Heffner, and David Dodell-Feder with the University of Rochester. The study was funded with support from the National Center for Advancing Translational Sciences of the National Institutes of Health and the URMC Clinical the Translational Science Institute.

Read More: Memories Create ‘Fingerprints’ That Reveal How the Brain is Organized

Research to Treat Neurodegenerative Diseases Advances: URMC Start-up Acquired

Wednesday, November 18, 2020

Oscine Therapeutics -- a biotechnology company that is developing cell-based therapies for neurological disorders based on discoveries made at the University of Rochester Medical Center (URMC) -- has been acquired by Sana Biotechnology for undisclosed terms.

The research behind Oscine is based on decades of work in the lab of Steve Goldman, M.D., Ph.D., professor of Neurology and Neuroscience and co-director of the URMC Center for Translational Neuromedicine. Goldman's research has focused on understanding the basic biology and molecular function of the glial support cells in the central nervous system, devising new techniques to precisely manipulate and sort these cells, and studying how cell replacement could impact the course of neurological diseases. Goldman, who was Oscine's president and scientific founder, joins Sana as senior vice-president and head of Central Nervous System Therapy. He will also remain on the URMC faculty.

Sana Biotechnology, which has operations in Washington, Massachusetts, and California, was created in 2018 with a focus on developing and delivering engineered cells as medicines for patients. The company is led by a team of biotechnology industry veterans and supported by more than $700 million in investment. Last year, the company invested in Oscine's R&D in neurological disorders, in what remains the University of Rochester's largest-ever commercial spin-off.

The exclusive licenses for the portfolio of technologies and equity stake that the University of Rochester held with Oscine have been acquired by Sana. The University and Goldman may continue to receive significant licensing, milestone, and royalty payments from Sana going forward.

"The University of Rochester has been working closely with Dr. Goldman's lab and the Oscine team from its inception," said Scott Catlin, director of UR Ventures, the University's technology transfer office. "We are thrilled with the company's impressive progress and its acquisition by Sana and look forward to continue supporting the commercialization of Dr. Goldman's technologies."

Goldman's research focuses on support cells in the brain called glia. In many neurological diseases -- such as multiple sclerosis, Huntington's, and neuropsychiatric disorders -- these cells either disappear or malfunction. This ultimately leads to the motor, cognitive, and behavioral symptoms of these disorders. Goldman's lab has shown that replacing these sick cells with healthy ones can slow and even reverse disease progression in animal models of these diseases.

The Center for Translational Neuromedicine maintains labs in Rochester and at the University of Copenhagen in Denmark. Goldman's research for cell-based therapies has received relevant support from the National Institute of Neurological Disorders and Stroke, the National Institute of Mental Health, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the Lundbeck Foundation, the Novo Nordisk Foundation, CHDI, and NYSTEM.

Imaging the secret lives of immune cells in the eye

Friday, October 9, 2020

Captured by the lab of Jesse Schallek, assistant professor of ophthalmology and neuroscience, the image shows microscopic immune cells escaping a nearby blood vessel in response to inflammation. The color overlay shows computer detection of single cells that are tracked over time. (Courtesy of Schallek lab)

Rochester researchers demonstrate way to track the interactions of microscopic immune cells in a living eye without dyes or damage, a first for imaging science.

Combining infrared videography and artificial intelligence, the new technique could be a 'game-changer' for some clinical diagnoses as well as for fields like pharmaceuticals.

University of Rochester vision scientist Jesse Schallek can barely contain his excitement as he shares time-lapse videos showing immune cells moving through living retinal tissue at the back of an eye.

In one clip, immune cells crawl so slowly along the inside edge of a blood vessel that the video must be sped up 25 times to show their progress. Another cell slowly treads against the flow of blood in a vessel, like a salmon fighting its way upstream. Other immune cells leave the blood vessels and inch through the surrounding tissue, then congregate in a swarm, forming a beehive of activity.

Schallek and his vision lab at the University of Rochester Center for Visual Science and Flaum Eye Institute, have created a new microscopy technique, described in the journal eLIFE, that builds upon groundbreaking adaptive optics developed at the University more than 20 years ago.

Combined with time lapse videography and artificial intelligence software, the new technique enables researchers for the first time to noninvasively image and track—without labeling—the interactions of translucent immune cells within live retinal tissue in animals. Until now, the immune cells had to be labeled with fluorescent agents and often reinjected in order to image them—raising questions about how this might change the behavior of the cells. Another common, but limiting approach is to remove cells and study them with a microscope in a dish.

Read More: Imaging the secret lives of immune cells in the eye

2020 Convocation Award Winners

Tuesday, September 15, 2020

Let's all send congratulations to our graduate students and faculty for once again being recognized at Convocation.

Graduate Alumni Fellowship Award - Paige Nicklas

Irving L. Spar Fellowship Award - Maleelo Shamambo

J. Newell Stannard Scholarship Award - Michael Giannetto

Merritt and Marjorie Cleveland Fellowship - Victoria Popov

Outstanding Graduate Program Director - Anna Majewska, Ph.D.

Outstanding Graduate Course Director - Robert Stanley Freeman, Ph.D.

Read More: 2020 Convocation Award Winners

Rochester leads novel research project on how the brain interprets motion

Thursday, September 3, 2020

Major NIH award to study how the brain infers structure from sensory signals may have applications for disorders like schizophrenia and offer insights for artificial intelligence

Imagine you're sitting on a train. You look out the window and see another train on an adjacent track that appears to be moving. But, has your train stopped while the other train is moving, or are you moving while the other train is stopped?

The same sensory experience—viewing a train—can yield two very different perceptions, leading you to feel either a sensation of yourself in motion or a sensation of being stationary while an object moves around you.

Human brains are constantly faced with such ambiguous sensory inputs. In order to resolve the ambiguity and correctly perceive the world, our brains employ a process known as causal inference.

Causal inference is a key to learning, reasoning, and decision making, but researchers currently know little about the neurons involved in the process.

In order to bridge the gap, a team of researchers at the University of Rochester, including Greg DeAngelis, the George Eastman Professor of Brain and Cognitive Sciences, and Ralf Haefner, an assistant professor of brain and cognitive sciences, received a $12.2 million grant award from the National Institutes of Health for a project to better understand how the brain uses causal inference to distinguish self-motion from object motion.

The five-year award is part of the NIH's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative. The insights generated by the award, which also involves researchers at New York University, Harvard Medical School, Rice University, and the University of Washington, may have important applications in developing treatments and therapies for neural disorders such as autism and schizophrenia, as well as inspire advances in artificial intelligence.

"This NIH BRAIN Initiative Award is the biggest research award in the history of the Department Brain and Cognitive Sciences," says Duje Tadin, professor and chair of the department at Rochester. "It aims to solve the key question of how our brains interpret the information collected by our senses. This research builds on a longstanding strength of BCS of using computational methods to understand both behavior and underlying neural mechanisms."

Unraveling a complicated circuit of neurons

Causal inference involves a complicated circuit of neurons and other sensory mechanisms that are not widely understood, DeAngelis says, because "sensory perception works so well most of the time, so we take for granted how difficult of a computational problem it is."

In actuality, sensory signals are noisy and incomplete. Additionally, there are many possible events that could happen in the world that would produce similar patterns of sensory input.

Consider a spot of light that moves across the retina of the eye. The same visual input could be the result of a variety of situations: it could be caused by an object that moves in the world while the viewer remains stationary, such as a person standing still at a window and observing a moving ambulance with a flashing light; it could be caused by a moving observer viewing a stationary object, such as a runner noticing a lamppost from a distance; or it could be caused by many different combinations of object motion, self-motion, and depth.

The brain has a difficult problem to solve: it must infer what most likely caused the specific pattern of sensory signals that it received. It can then draw conclusions about the situation and plan appropriate actions in response.

Using data science, lab experiments, computer models, and cognitive theory, DeAngelis, Haefner, and their colleagues will pinpoint single neurons and groups of neurons that are involved in the process. Their goal is to identify how the brain generates a consistent view of reality through interactions between the parts of the brain that process sensory stimuli and the parts of the brain that make decisions and plan actions.

Developing therapies and artificial intelligence

Recognizing how the brain uses causal inference to separate self-motion from object motion may help in designing artificial intelligence and autopilot devices.

"Understanding how the brain infers self-motion and object motion might provide inspiration for improving existing algorithms for autopilot devices on planes and self-driving cars," Haefner says.

For example, a plane's circuitry must take into account the plane's self-motion in the air while also avoiding other moving planes appearing around it.

The research may additionally have important applications in developing treatments and therapies for neural disorders such as autism and schizophrenia, conditions in which casual inference is thought to be impaired.

"While the project is basic science focused on understanding the fundamental mechanisms of causal inference, this knowledge should eventually be applicable to the treatment of these disorders," DeAngelis says.

Read More: Rochester leads novel research project on how the brain interprets motion

Circadian Rhythms Help Guide Waste from Brain

Wednesday, September 2, 2020

New research details how the complex set of molecular and fluid dynamics that comprise the glymphatic system -- the brain's unique process of waste removal -- are synchronized with the master internal clock that regulates the sleep-wake cycle. These findings suggest that people who rely on sleeping during daytime hours are at greater risk for developing neurological disorders.

"These findings show that glymphatic system function is not solely based on sleep or wakefulness, but by the daily rhythms dictated by our biological clock," said neuroscientist Maiken Nedergaard, M.D., D.M.Sc., co-director of the Center for Translational Neuromedicine at the University of Rochester Medical Center (URMC) and senior author of the study, which appears in the journal Nature Communications.

The findings add to a growing understanding of the operation and function of glymphatic system, the brain's self-contained waste removal process which was first discovered in 2012 by researchers in the Nedergaard's lab. The system consists of a network of plumbing that follows the path of blood vessels and pumps cerebrospinal fluid (CSF) through brain tissue, washing away waste. Research a few years later showed that the glymphatic system primarily functions while we sleep.

Since those initial discoveries, Nedergaard's lab and others have shown the role that blood pressure, heart rate, circadian timing, and depth of sleep play in the glymphatic system's function and the chemical signaling that occurs in the brain to turn the system on and off. They have also shown how disrupted sleep or trauma can cause the system to break down and allow toxic proteins to accumulate in the brain, potentially giving rise to a number of neurodegenerative diseases, such as Alzheimer's.

Read More: Circadian Rhythms Help Guide Waste from Brain

Krishnan Padmanabhan has publication in Frontiers in Computational Neuroscience

Monday, July 13, 2020

Top-Down Control of Inhibitory Granule Cells in the Main Olfactory Bulb Reshapes Neural Dynamics Giving Rise to a Diversity of Computations

Growing evidence shows that top-down projections from excitatory neurons in piriform cortex selectively synapse onto local inhibitory granule cells in the main olfactory bulb, effectively gating their own inputs by controlling inhibition. An open question in olfaction is the role this feedback plays in shaping the dynamics of local circuits, and the resultant computational benefits it provides. Using rate models of neuronal firing in a network consisting of excitatory mitral and tufted cells, inhibitory granule cells and top-down piriform cortical neurons, we found that changes in the weight of feedback to inhibitory neurons generated diverse network dynamics and complex transitions between these dynamics. Changes in the weight of top-down feedback supported a number of computations, including both pattern separation and oscillatory synchrony. Additionally, the network could generate gamma oscillations though a mechanism we termed Top-down control of Inhibitory Neuron Gamma (TING). Collectively, these functions arose from a codimension-2 bifurcation in the dynamical system. Our results highlight a key role for this top-down feedback, gating inhibition to facilitate often diametrically different computations.

Read More: Krishnan Padmanabhan has publication in Frontiers in Computational Neuroscience

URMC Tapped to Advance Research in Intellectual and Developmental Disabilities

Wednesday, July 8, 2020

The University of Rochester has been designated an Intellectual and Developmental Disabilities Research Center (IDDRC) by the National Institute of Child Health and Human Development (NICHD). The award recognizes the Medical Center's national leadership in research for conditions such Autism, Batten disease, and Rett syndrome, will translate scientific insights into new ways to diagnose and treat these conditions, and provide patients and families access to cutting edge care.

The IDDRC at the University of Rochester will be led by John Foxe, Ph.D., director of the Del Monte Institute for Neuroscience, and Jonathan Mink, M.D., Ph.D., chief of Child Neurology at Golisano Children's Hospital. The designation is accompanied with more than $6 million in funding from NICHD.

Read More: URMC Tapped to Advance Research in Intellectual and Developmental Disabilities

Study: Neurons can shift how they process information about motion

Friday, June 19, 2020

New Rochester research indicates some neurons may be more adept than previously thought in helping you perceive the motion of objects while you move through the world.

The findings may have implications for developing future prosthetics and for understanding some brain disorders.

Our brains use various reference frames—also known as coordinate systems—to represent the motion of objects in a scene.

Some coordinate systems are more useful than others for representing information. To represent a location on Earth, for example, we might use an Earth-centered coordinate system such as latitude and longitude. In such an Earth-centered coordinate system, a location—such as your home—is constant over time. But you could also represent where you live as a location relative to the sun using a sun-centered coordinate system. Such a system would clearly not be useful for people trying to find where you live, as your address in sun-centered coordinates would change continuously as the Earth rotates relative to the sun.

The human brain faces this same problem of representing information with appropriate coordinate systems and transferring between coordinate systems to guide your actions. This is partly because sensory information is encoded in different reference frames: visual information is initially encoded relative to the eye with eye-centered coordinates, auditory information is initially encoded relative to the head with head-centered coordinates, and so on. An interesting set of computations must occur in the brain in order for these sensory signals to be combined to allow a person to perceive an entire scene.

But how do neurons represent objects in different reference frames while you move through an environment?

In a paper published in the journal Nature Neuroscience, researchers from the University of Rochester, including Greg DeAngelis, a professor of brain and cognitive sciences, examined how neurons in the brain represent the motion of an object while the observer is also moving.

Specifically, the researchers studied how observers judge an object's motion relative to the observer's head or relative to the world.

Their findings—that neurons in a specific brain region are more flexible in switching between reference frames—offer important information about the inner workings of the brain and could potentially be used in neural prosthetics and therapies to treat brain disorders.

Are neurons fixed or flexible?

Imagine you're playing soccer. If you're running and want to head the ball, you would need to compute the trajectory of the ball's motion relative to your head so you can make contact between your head and the ball. A head-centered coordinate system would therefore be useful. Alternatively, if you are running and watching your teammate kick the ball toward the goal, you would need to compute the trajectory of the ball relative to the goal to determine whether or not your teammate scored. This would require a world-centered coordinate system since the goal is fixed relative to the world.

"Depending on the task being performed, the brain needs to represent object motion in different coordinate systems to be successful," DeAngelis says. "The big question is: how does the brain do this?"

The researchers wanted to determine if the brain has to switch between different neurons that each have a different fixed reference frame—for example, switching between head-centered neurons and world-centered neurons—or if the neurons are flexible and update their reference frames according to the instantaneous demands of the task of representing object motion.

The researchers trained subjects to judge object motion in either head-centered or world-centered coordinates and to switch between them from trial to trial based on a cue.

The researchers recorded signals from neurons in two different areas of the brain and found that neurons in the ventral intraparietal (VIP) area of the brain have a remarkable property: their responses to object motion change depending on the task.

That is, the neurons do not have fixed reference frames, but instead flexibly adapt to the demands of the task and change their reference frames accordingly.

Neurons in VIP will represent object motion in head-centered coordinates when the subjects are required to report object motion relative to their head. They represent object motion in world-centered coordinates when the subject was required to report object motion relative to the world.

Because the neurons have such flexible responses, this means the brain may greatly simplify the process of passing along the information it needs to guide actions.

"This is the first study to show that neurons can flexibly represent spatial information, such as object motion, in different coordinate systems based on the instructions given to the subject," DeAngelis says. "This means the brain can decode—or 'read out'—information from this single population of neurons and be able to have the information it needs for either task situation."

The VIP area is located in the parietal lobe of the brain and receives inputs from visual, auditory, and vestibular (inner ear) senses. This is the first study to test for flexible reference frames, so the VIP area is the only area known to have this property. The researchers suspect, however, that neurons in other areas of the brain may have this property as well.

Applications for neural prosthetics and brain disorders

The research offers important information about the inner workings of the brain and potentially could be used for applications such as neural prosthetics, in which brain activity is used to control artificial limbs or vehicles.

"To make an effective neural prosthetic, you want to collect signals from the brain areas that would be most useful and flexible for performing basic tasks," DeAngelis says. "If those tasks involve intercepting moving objects, for example, then tapping into signals from VIP might be a way to make a prosthetic work efficiently for a variety of tasks that would involve judging motion relative to the head or the world."

Although this research is not currently connected to a specific brain disorder, researchers have previously found that humans' ability to take in sensory information and infer which events in the world caused that sensory input—an ability known as causal inference—is impaired in disorders such as autism and schizophrenia.

"In ongoing and future work, we are studying the neural mechanisms of this causal inference process in more detail, using related tasks that involve interactions between object motion and self-motion," DeAngelis says.

Read More: Study: Neurons can shift how they process information about motion

NGP Student Honored with Edward Peck Curtis Award for Excellence in Teaching

Friday, May 22, 2020

Neuroscience graduate student Monique Mendes, M.S., has received the Edward Peck Curtis Award for Excellence in Teaching by a Graduate Student.

"I'm extremely proud of my students and what they have accomplished in and outside of the lab. I am incredibly fortunate to have been presented with opportunities to teach students throughout my Ph.D. I want to thank them because I have learned so much in the process," Mendes said.

Mendes was one of 13 graduate students to be honored with this award, which requires graduate students to have significant interaction with undergraduate students in the classroom or lab, and excel in advancing the teaching mission of the University by providing highly-skilled and innovative instruction.

"I was thoroughly convinced by the nomination submitted by the faculty that Monique is an outstanding educator with a bright future," Vice Provost and University Dean of Graduate Education Melissa Sturge-Apple, Ph.D., said. In presenting the award to Mendes virtually earlier this month, Sturge-Apple presented Mendes remarked "I'm grateful for all of your hard work and your mentoring and teaching which is central to the mission of our University, so I was so honored to give you this award. I wish I could do it in person."

During the presentation, Sturge-Apple read some of the nomination letters considered in the process:

"She [Monique] has a very didactic nature to her that is beautiful complimented by her enthusiasm and her vigor. She sets the setting naturally and her persistent work ethic is taught without words but through actions."

"As a younger black woman who wants to go into science and medicine I don't have very many people in my life who go into my field of interest and definitely not many who look like me, so Monique is a role model in that sense as well. She takes away some of the feelings of otherness that I had in certain situations and serves as a reminder that I can do this and I do belong."


"She has a passion that's contagious and she is clear and succinct in conveying information. She wants those around her to understand the material and to love it the same way that she does."

Mendes is a 5th year student in the Neuroscience Graduate Program and is studying the dynamics and kinetics of microglia self-renewal in the adult brain.

Two 2020 NGP Graduates Honored for Thesis Work

Friday, May 22, 2020

Rianne Stowell, Ph.D. was awarded the Wallace O. Fenn Award for her thesis that characterizes the dynamics of microglia, and the mechanisms regulating the function of these cells in different areas of the brain. This award is given annually to a graduating student who has performed especially meritorious research. According to her advisor Ania Majewska, Ph.D., the research that contributed to Stowell's thesis was published in a series of three manuscripts and two reviews. Stowell's work put microglia in the spotlight, as heterogeneous complex cells that are exquisitely tuned to activity in the brain. One of the main ¬- ¬and surprising - findings was that their activities are largely carried out in the quiescent or sleeping brain. This discovery has broad implications for understanding how microglia fit into the functions of the brain's networks and the development of novel therapeutics for neurological diseases where microglial function is likely altered. "The work highlights Stowell's strong independent streak and a great work ethic," Majewska said. "That, coupled with her innate intellectual abilities and creativity, results in a winning combination that will take her far in the future. This thesis is a great beginning to an incredibly promising scientific journey."

Dawling Dionisio-Santos, M.D., Ph.D. was awarded The Vincent du Vigneaud Award for his thesis work that was judged as superior and unique with the potential to stimulate and extend research in the field. According to Dionisio-Santos' advisor M. Kerry O'Banion, M.D., Ph.D., Dionisio-Santos moved his research in a more translational direction and initiated a series of experiments using glatiramer acetate, a drug currently prescribed for the treatment of multiple sclerosis. He discovered that, in addition to reducing amyloid plaque levels, glatiramer acetate also reduces tau pathology and improves behavioral performance, demonstrating clear translational relevance for patients with Alzheimer's disease. "Dionisio-Santos is a talented future physician-scientist," O'Banion said. "With outstanding potential based on his demonstrated ability to carry out complex experiments and analyses, develop new ideas and experiments based on thorough evaluation of the literature, and inspire others with his passion for wanting to better understand neurodegenerative diseases."

University of Rochester RNA Essay Contest: “The role of RNA research in community health”

Wednesday, May 20, 2020

Sponsored by the RNA Society & Lexogen, UR RNA Structure & Function Cluster, and UR Center for RNA Biology

Who is eligible: Any University of Rochester graduate student or post-doc with an interest in RNA biology

Entry rules: Essays should be no more than two pages, single-spaced (excluding references, which should be present), 11-point Arial font, with half-inch margins all around.

Prizes: Two prizes will be given out. Gold (valued at ~$1000), and Silver (valued at ~$250). Additionally, winning essays along with photos of the winning authors will be posted on the Center for RNA Biology webpage and featured on the RNA Society's RNA Salon page, offering international exposure.

Details

The UR's Center for RNA Biology is running an essay contest, sponsored by the RNA Society & Lexogen, and UR's RNA Structure & Function Cluster, on "The role of RNA research in community health". This contest, which is open to all UR graduate students and post-docs, aims to promote creative yet data-driven thinking about the importance of RNA in the "big picture".

Considering that reliable technology is required for research in an increasingly virtual world, prizes will consist of a PC or Mac laptop for Gold winners (~$1000), and software licenses or peripherals (e.g., second monitor or laptop dock) for Silver winners (~$250), subject to the needs of each recipient.

Submissions must be emailed to Liz by Monday, July 13th, 2020.

Winners will be announced in the beginning of August.

Links

The RNA Society: https://www.rnasociety.org/

RNA Structure & Function Cluster: http://www.rochester.edu/ucis/rnastructure.html

Center for RNA Biology: https://www.urmc.rochester.edu/rna-biology.aspx

Installation of a new Talon L210C cryo-EM facility

Friday, May 15, 2020

Center for RNA Biology Contributes to Fighting Coronavirus

Tuesday, April 28, 2020

Viruses like the coronavirus that causes COVID-19 are able to unleash their fury because of a devious weapon: ribonucleic acid, also known as RNA.

A contingent of researchers at the University of Rochester study the RNA of viruses to better understand how RNAs work and how they are involved in diseases. As COVID-19 continues to spread around the globe, RNA research provides an important foundation for developing antiviral drugs, vaccines, and other therapeutics to disrupt the virus and stop infections.

"Understanding RNA structure and function helps us understand how to throw a therapeutic wrench into what the COVID-19 RNA does—make new virus that can infect more of our cells and also the cells of other human beings," says Lynne Maquat, professor of biochemistry and biophysics at the University of Rochester Medical Center and the director of Rochester's Center for RNA Biology.

In the past few decades, as scientists came to realize that genetic material is largely regulated by the RNA it encodes, that most of our DNA produces RNA, and that RNA is not only a target but also a tool for disease therapies, "the RNA research world has exploded," Maquat says. "The University of Rochester understood this."

In 2007, Maquat founded the Center for RNA Biology as a means of conducting interdisciplinary research in the function, structure, and processing of RNAs. The center involves researchers from both the River Campus and the Medical Center, combining expertise in biology, chemistry, engineering, neurology, and pharmacology.

While much of the research across the University has been put on pause, labs that are involved in coronavirus research remain active.

"Our strength as a university is our diversity of research expertise, combined with our highly collaborative nature," says Dragony Fu, an assistant professor of biology on the River Campus and a member of the Center for RNA Biology. "We are surrounded by outstanding researchers who enhance our understanding of RNA biology, and a medical center that provides a translational aspect where the knowledge gained from RNA biology can be applied for therapeutics."

Read More: Center for RNA Biology Contributes to Fighting Coronavirus

Maiken Nedergaard honored by American Stroke Association for dedication to stroke research

Monday, February 24, 2020

Maiken Nedergaard, M.D., D.M.Sc., co-director of the Center for Translational Neuromedicine, professor in the Departments of Neurology, Neuroscience and Neurosurgery, received the Thomas Willis Lecture Award from the American Stroke Association. The award honors Nedergaard's career of significant contributions to the basic science of stroke research.

The Nedergaard lab is dedicated to deciphering the role of neuroglia, cell types that constitute half of the entire cell population of the brain and spinal cord.

Last month, the lab published research showing that during a stroke the glymphatic system goes awry, triggers edema and drowns brain cells. In 2012, Nedergaard and her colleagues first described the glymphatic system, a network that piggybacks on the brain's blood circulation system and is comprised of layers of plumbing, with the inner blood vessel encased by a 'tube' that transports cerebrospinal fluid (CSF). The system pumps CSF through brain tissue, primarily while we sleep, washing away toxic proteins and other waste.

The Thomas Willis Award honors the prominent British physician credited with providing the first detailed description of the brain stem, the cerebellum and the ventricles, with extensive hypothesis about the functions of these brain parts. The award recognizes contributions to the investigation and management of stroke basic science.

Nedergaard was one of eleven leading scientists honored for their work by the American Stroke Association. The awards were given during the American Stroke Association's International Stroke Conference in Los Angeles.

Suzanne Haber Honored by Society of Biological Psychiatry for Research on Mental Disorders

Thursday, January 30, 2020

Suzanne N. Haber, Ph.D., Dean's Professor in the Department of Pharmacology and Physiology, will receive the Society of Biological Psychiatry's 2020 Gold Medal Award at the Society's 75th Annual Scientific Convention & Meeting in the spring. The award honors members of the Society whose significant and sustained work has advanced and extended knowledge on the neurobiology of mental illness.

Haber's lab investigates the cortico-cortical and cortico-basal ganglia systems in the brain. Her work demonstrates the specific hard-wired connections that are associated with normal decision making, emotional and cognitive control, and the connectional abnormalities in those circuits that are linked to a wide range of mental health disorders, including obsessive-compulsive disorder (OCD), drug abuse and addiction, schizophrenia, and motor control disorders such as Parkinson's disease. This work has played a key role in targeting and interpreting the effects of noninvasive and invasive therapeutic approaches for OCD and depression.

For the past ten years, Haber has led the Silvio O. Conte Center for Basic and Translational Mental Health Research at the University of Rochester. Funded by the National Institute of Mental Health, the Center uses translational approaches to probe the neurocircuitry that underlies neuromodulation for OCD, pinpointing specific abnormalities within the brain circuits that are associated with the disease. This information is being used to guide new treatment options for the three million-plus Americans who live with the disorder.

"Suzanne's seminal contributions to elucidating specific neural networks that control learning, decision-making, reward and motivation, and how pathologies associated with these neural communication hubs underlie multiple neurological, movement, and mental health disorders make her uniquely qualified to receive this prestigious career award," said Robert T. Dirksen, Ph.D., Lewis Pratt Ross Professor and Chair of the Department of Pharmacology and Physiology. "Her work is making a difference in the lives of individuals and families suffering from neurological and mental health disorders. We are extremely proud that she represents the University of Rochester as a Society of Biological Psychiatry Gold Medal Award winner."

The Society of Biological Psychiatry was founded in 1945 to emphasize the medical and scientific study and treatment of mental disorders. It's the oldest neuropsychiatry research society in America, currently made up of more than 1,500 members from across the United States, Canada, Europe and Asia. Members conduct research in areas spanning from basic cellular studies to clinical trials and prevention research.

Haber, who is also a professor of Neuroscience, Brain and Cognitive Science, and Psychiatry, will split the 2020 Gold Medal Award with Carol Tamminga, M.D. of UT Southwestern Medical Center.