Cancer Biology, thanks to Green Lizards
What can green lizards and “dark matter” teach us about cancer?
First a bit about genomic dark matter: It refers to DNA sequences that make up a large part of the human genome but do not encode proteins, some of which are known as IncRNAs. They play a role in tissue development, tumor formation, and cancer progression—but many key questions remain about dark matter and IncRNAs.
University of Rochester Medical Center scientist Bin Zhang, Ph.D., and a team of researchers discovered how IncRNAs function and evolve in the genomes of green lizards. Their work is published in Cell Reports, in collaboration with scientists at Cold Spring Harbor Laboratory, Long Island, N.Y., where Zhang worked before joining URMC in 2015.
One particular IncRNA—MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1)—was first associated with lung cancers that were likely to spread and later found to be over-abundant in many other tumor types. The MALAT1 gene contains a unique tail structure that stabilizes the RNA molecule. Zhang’s team pioneered a series of computer models and algorithms allowing them to turn the tail structure into a searchable module. They discovered a class of 130 different vertebrate IncRNAs with similar structures to MALAT1, and then further conducted evolutionary studies into the activity of the IncRNAs in green lizards. The National Cancer Institute and National Institute of General Medical Sciences funded the study.
An assistant professor in Pathology and Laboratory Medicine and Pediatrics, Zhang also specializes in clinical cytogenetics and molecular genetics. He conducts detailed genetic tests and evaluates blood, bone marrow, lymph nodes, and other tissues for cancer.
Steven P Brown | 5/26/2017