Associate Professor
-
Department of Ophthalmology (SMD)
Dean's Professorship
-
Department of Ophthalmology (SMD)
Associate Professor
-
Department of Biomedical Genetics (SMD) - Joint
Research
The overall objective of my research is to find treatments and possibly cures for retinal and neuro-degenerative diseases. Towards this goal my research program focuses on 1) using patient-derived human induced pluripotent stem cells (hiPSCs) to study the molecular mechanism of specific retinal and ...
The overall objective of my research is to find treatments and possibly cures for retinal and neuro-degenerative diseases. Towards this goal my research program focuses on 1) using patient-derived human induced pluripotent stem cells (hiPSCs) to study the molecular mechanism of specific retinal and neurological diseases and 2) applying that knowledge to pharmacologically target certain retinal disorders in patient-derived cells.
The retina is an extension of the central nervous system that has been shown to share the pathological manifestations of a number of neurological disorders, including Alzheimer's disease, Parkinson's and multiple sclerosis. Moreover, patients with age-related macular degeneration (AMD), a disease of the central retina, have been shown to have non vision–related cognitive decline. Furthermore, a number of physiological processes that are affected in neuro-degenerative diseases are also impacted in retinal degenerative diseases. To cite a few examples, perturbation in phagocytic clearance, iron metabolism, polarized fluid transport and blood–tissue barrier function are all major cellular characteristics of degenerative diseases of both the retina and the brain. Therefore studying mechanisms of specific retinal degenerative diseases also has significant relevance for understanding other neurological disorders.
The current projects in the laboratory utilize patient-derived hiPSCs for:
• Studying the role of individual cell layer and intercellular interaction in retinal physiology and disease development
• Delineating the disease mechanism(s) of inherited retinal degenerative disease(s) and age-related macular degeneration
• Elucidating the role of gene-environment interaction in the pathophysiology of macular degeneration
More details about specific projects can be found on my lab website
Dalvi S, Roll M, Chatterjee A, Kumar LK, Bhogavalli A, Foley N, Arduino C, Spencer W, Reuben-Thomas C, Ortolan D, Pébay A, Bharti K, Anand-Apte B, Singh R
Developmental cell.. 2024 December 1659 (24):3290-3305.e9. Epub 10/02/2024.
Manian KV, Galloway CA, Dalvi S, Emanuel AA, Mereness JA, Black W, Winschel L, Soto C, Li Y, Song Y, DeMaria W, Kumar A, Slukvin I, Schwartz MP, Murphy WL, Anand-Apte B, Chung M, Benoit DSW, Singh R
Cell stem cell.. 2021 May 628 (5):846-862.e8. Epub 03/29/2021.
Manian KV, Galloway CA, Dalvi S, Emanuel AA, Mereness JA, Black W, Winschel L, Soto C, Li Y, Song Y, DeMaria W, Kumar A, Slukvin I, Schwartz MP, Murphy WL, Anand-Apte B, Chung M, Benoit DSW, Singh R
Tang C, Han J, Dalvi S, Manian K, Winschel L, Volland S, Soto CA, Galloway CA, Spencer W, Roll M, Milliner C, Bonilha VL, Johnson TB, Latchney L, Weimer JM, Augustine EF, Mink JW, Gullapalli VK, Chung M, Williams DS, Singh R
Communications biology.. 2021 February 54 (1):161. Epub 02/05/2021.