Research Projects
Biological Tissue Models
Nanomembranes are useful in the creation of dual chamber (“transwell") microphysiological systems because they provide: 1) a highly permeable scaffold with a thickness that is comparable to the thickness of basement membranes and 2) an imaging quality that is far superior to alternative choices for membranes. We currently have active projects that use nanomembranes to create models of bone infection (1) and the microvasculature (2).
Learn more about Biological Tissue Models
Small Format Hemodialysis
The extraordinary permeability and precision sieving properties of nanomembranes makes them ideal candidates for the development of wearable hemodialysis systems (3, 4). We have active research projects in this space focused on the clearance of toxins in bench top simulators and animals.
Learn more about Small Format Hemodialysis
Biosensors
We are actively developing nanomembranes for biomolecular sensing with the purpose of developing sensitive and fast diagnostic systems for liquid biopsies. We have used our membranes to improve the performance of a DNA sensor (5) and to make porous electrodes around a capacitance-based sensor (6). Current work is focused on integrating sensing elements directly on the membrane surface.
Electrokinetic Devices
In addition to their high permeability to flow and diffusing species, our membranes produce extraordinary behaviors in the presence of electromagnetic fields. We have studied these phenomena in the context of electroosmotic pumping (7) and electrically tunable filtration (8). Ultimately this function of nanomembrane could be combined with filtration and sensing functions to create a truly integrated ‘lab-on-a-chip.’
Learn more about Electrokinetic Devices
References
1. Briggs, K.; Madejski, G.; Magill, M.; Kastritis, K.; de Haan, H. W.; McGrath, J. L.; Tabard-Cossa, V., DNA Translocations through Nanopores under Nanoscale Preconfinement. Nano Lett 2017.
2. Burgin, T.; Johnson, D.; Chung, H.; Clark, A.; McGrath, J., Analytical and Finite Element Modeling of Nanomembranes for Miniaturized, Continuous Hemodialysis. Membranes 2015, 6 (1), 6.
3. de Mesy Bentley, K. L.; Trombetta, R.; Nishitani, K.; Bello-Irizarry, S. N.; Ninomiya, M.; Zhang, L.; Chung, H. L.; McGrath, J. L.; Daiss, J. L.; Awad, H. A.; Kates, S. L.; Schwarz, E. M., Evidence of Staphylococcus Aureus Deformation, Proliferation, and Migration in Canaliculi of Live Cortical Bone in Murine Models of Osteomyelitis. J Bone Miner Res 2017, 32 (5), 985-990.
4. Johnson, D. G.; Khire, T. S.; Lyubarskaya, Y. L.; Smith, K. J.; Desormeaux, J. P.; Taylor, J. G.; Gaborski, T. R.; Shestopalov, A. A.; Striemer, C. C.; McGrath, J. L., Ultrathin silicon membranes for wearable dialysis. Advances in chronic kidney disease 2013, 20 (6), 508-15.
5. Kavalenka, M. N.; Striemer, C. C.; DesOrmeaux, J. P. S.; McGrath, J. L.; Fauchet, P. M., Chemical capacitive sensing using ultrathin flexible nanoporous electrodes. Sensor Actuat B-Chem 2012, 162 (1), 22-26.
6. Khire, T. S.; Nehilla, B. J.; Getpreecharsawas, J.; Gracheva, M. E.; Waugh, R. E.; McGrath, J. L., Finite element modeling to analyze TEER values across silicon nanomembranes. Biomed Microdevices 2018, 20 (1), 11.
7. Snyder, J. L.; Getpreecharsawas, J.; Fang, D. Z.; Gaborski, T. R.; Striemer, C. C.; Fauchet, P. M.; Borkholder, D. A.; McGrath, J. L., High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes. P Natl Acad Sci USA 2013, 110 (46), 18425-18430.
8. Mukaibo, H.; Wang, T.; Perez-Gonzalez, V. H.; Getpreecharsawas, J.; Wurzer, J.; Lapizco-Encinas, B. H.; McGrath, J. L., Ultrathin nanoporous membranes for insulator-based dielectrophoresis. Nanotechnology 2018, 29 (23), 235704.