Skip to main content
menu
URMC / Labs / Dickerson Lab / News

widget-70926985-61e

URMC & RIT faculty awarded patent for gene transfer technology that could transform cancer therapies

Monday, December 13, 2021

The carbon nanotube device could streamline some cancer therapies like CAR T-cell therapy.

Researchers at the University of Rochester Del Monte Institute for Neuroscience and Rochester Institute of Technology have received a U.S. patent for technology designed to accelerate development of cell therapies for cancer and other bio-therapies. The technique provides a less toxic alternative to standard gene transfer techniques by using an array of carbon nanotubes to deliver DNA into primary neurons, immune cells, and stem cells.

“Our goal is to provide a technology that can lower the cost and increase speed and the range of cell types that can be adapted for therapeutic use,” said Ian Dickerson, Ph.D., associate professor of Neuroscience. “Many new cell-based therapies depend on changing the gene expression of primary cells. These approaches range from stem cells for production of patient-specific repair tissues, to CAR T-cells used for focused cancer therapy.” 

Dickerson and Michael Schrlau, Ph.D., associate professor of mechanical engineering in RIT’s Kate Gleason College of Engineering, were recently awarded a patent for this technology. It delivers biomolecules into cells through carbon nanotube arrays. Their “honeycomb” of nanotubes device was first described in a 2016 study published in the journal Small.

Read More: URMC & RIT faculty awarded patent for gene transfer technology that could transform cancer therapies