Skip to main content
menu
URMC / Labs / O'Banion-Olschowka Labs / Honors & News

 

Honors & News

20242023202220212020

Comparing gene sequences across species to understand aging and dementia

Wednesday, October 16, 2024

A new grant partners longevity researchers and Alzheimer’s experts at Rochester to study the gene mechanisms that contribute to long and healthy lifespans

Whether you give a mouse a cookie, as the book title goes, or kale leaves, or hot-stone massages, they will not live longer than two to three years. But other mammals, like naked mole rats and bowhead whales, can live much longer—and perhaps can teach us to follow suit.

At the University of Rochester, a new collaboration between leading longevity researchers and brain disease experts examines gene mechanisms responsible for long life, drawing on the latest findings to pursue novel interventions for the treatment and prevention of Alzheimer’s disease and related dementias.

Today’s oldest naked mole rats, born during the Reagan administration, show exceptional resistance to age-related disease. Meanwhile, when degus (small Chilean rodents) develop Alzheimer’s disease, it progresses in a remarkably similar manner to humans. Examining the genes of these mammals has the potential to yield insights into how humans can live longer—with their cognitive faculties intact.

“No matter how much you pamper a mouse, it will not live to 40 years as naked mole rats will,” says Vera Gorbunova, the Doris Johns Cherry Professor in the departments of biology and of medicine. To bridge the knowledge gap from rodents, whales, and other long-lived mammals to humans, Gorbunova tapped M. Kerry O’Banion, a professor of neuroscience at the University of Rochester Medical Center, who has studied the pathogenesis of Alzheimer’s disease for 30 years.

Read More: Comparing gene sequences across species to understand aging and dementia